In-plane compressive behavior of cross-laminated bamboo and timber with variable heights

被引:1
作者
Li, Hao [1 ]
Wei, Yang [1 ]
Ding, Minmin [1 ]
Chen, Si [1 ]
Chen, Jiawei [1 ]
机构
[1] Nanjing Forestry Univ, Coll Civil Engn, Nanjing 210037, Peoples R China
关键词
Cross-laminated bamboo and timber; Cross-laminated timber; In-plane compression; Performance evaluation; WALLS;
D O I
10.1016/j.tws.2024.112295
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the in-plane compressive behavior of 5-layer cross-laminated bamboo and timber (CLBT) wall elements with variable heights. Five different heights of CLBT specimens, ranging 400 mm - 3800 mm, were designed for the experiment, with conventional 5-layer cross-laminated timber (CLT) specimens used as controls. Theoretical calculations based on timber structure design codes were employed to analyze the ultimate bearing capacity in compression, complemented by finite element simulations based on Abaqus that also explored the failure characteristics. The results indicated that CLBT wall panels had significantly better compressive performance compared to those of CLT wall panels. For wall panels of around 3.0 m and 6.0 m in height, the compressive strength of the CLBT was approximately 65 % and 40 % higher than that of the CLT, respectively. For specimens showing buckling instability, CLBT demonstrated more concentrated failure in the end regions, contrasting with CLT, which failed primarily in the central region. The outcomes of this study clearly delineate the superiority of CLBT over CLT when used as wall panels, providing valuable references for their potential engineering applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An Innovative Connection System for Cross-Laminated Timber Structures
    Polastri, Andrea
    Giongo, Ivan
    Piazza, Maurizio
    STRUCTURAL ENGINEERING INTERNATIONAL, 2017, 27 (04) : 502 - 511
  • [42] Simulation of the Fire Resistance of Cross-laminated Timber (CLT)
    Schmid, Joachim
    Klippel, Michael
    Just, Alar
    Frangi, Andrea
    Tiso, Mattia
    FIRE TECHNOLOGY, 2018, 54 (05) : 1113 - 1148
  • [43] Experimental analysis of cross-laminated timber panels in fire
    Frangi, Andrea
    Fontana, Mario
    Hugi, Erich
    Joebstl, Robert
    FIRE SAFETY JOURNAL, 2009, 44 (08) : 1078 - 1087
  • [44] Digital transformation in a cross-laminated timber business network
    Hamalainen, Mervi
    Salmi, Asta
    JOURNAL OF BUSINESS & INDUSTRIAL MARKETING, 2023, 38 (06) : 1251 - 1265
  • [45] Flexural Performance of Splice Connections in Cross-Laminated Timber
    Subhani, Mahbube
    Shill, Sukanta Kumer
    Al-Deen, Safat
    Anwar-Us-Saadat, Mohammad
    Ashraf, Mahmud
    BUILDINGS, 2022, 12 (08)
  • [46] Cross-laminated timber (CLT) - a state of the art report
    Jelec, Mario
    Varevac, Damir
    Rajcic, Vlatka
    GRADEVINAR, 2018, 70 (02): : 75 - 95
  • [47] Enclosure fire dynamics with a cross-laminated timber ceiling
    McNamee, Robert
    Zehfuss, Jochen
    Bartlett, Alastair, I
    Heidari, Mohammad
    Robert, Fabienne
    Bisby, Luke A.
    FIRE AND MATERIALS, 2021, 45 (07) : 847 - 857
  • [48] INFLUENCER PERCEPTIONS OF CROSS-LAMINATED TIMBER IN THE US SOUTH
    Vlosky, Richard P.
    Parajuli, Rajan
    LeBlanc, Mason T.
    Gale, Charles B.
    DIGITALISATION AND CIRCULAR ECONOMY: FORESTRY AND FORESTRY BASED INDUSTRY IMPLICATIONS, 2019, : 321 - 325
  • [49] Simulation of the Fire Resistance of Cross-laminated Timber (CLT)
    Joachim Schmid
    Michael Klippel
    Alar Just
    Andrea Frangi
    Mattia Tiso
    Fire Technology, 2018, 54 : 1113 - 1148
  • [50] Cross-laminated Timber Design by Flattened Bamboo based on Near-infrared Spectroscopy and Finite Element Analysis
    Li, Chao
    Zhang, Lixin
    Ma, Xinyu
    Wang, Xilong
    BIORESOURCES, 2021, 16 (02) : 3437 - 3453