Classifying Alzheimer's Disease Neuropathology Using Clinical and MRI Measurements

被引:2
作者
Zhuang, Xiaowei [1 ,2 ,3 ]
Cordes, Dietmar [1 ,4 ]
Bender, Andrew R. [1 ]
Nandy, Rajesh [5 ]
Oh, Edwin C. [2 ,3 ,6 ]
Kinney, Jefferson [2 ,7 ]
Caldwell, Jessica Z. K. [1 ]
Cummings, Jeffrey [7 ]
Miller, Justin [1 ]
机构
[1] Cleveland Clin, Lou Ruvo Ctr Brain Hlth, Las Vegas, NV USA
[2] Univ Nevada, Interdisciplinary Neurosci PhD Program, Las Vegas, NV USA
[3] Univ Nevada, Lab Neurogenet & Precis Med, Las Vegas, NV USA
[4] Univ Colorado Boulder, Boulder, CO USA
[5] Univ North Texas Hlth Sci Ctr, Sch Publ Hlth, Dept Biostat & Epidemiol, Ft Worth, TX USA
[6] Univ Nevada, Sch Med, Dept Internal Med, Las Vegas, NV USA
[7] Univ Nevada, Sch Integrated Hlth Sci, Chambers Grundy Ctr Transformat Neurosci, Dept Brain Hlth, Las Vegas, NV USA
关键词
Alzheimer's disease-meta-ROIs; APOE genotype; in vivo amyloid status; machine learning; severe AD neuropathology; HIPPOCAMPAL ATROPHY; MILD; ASSOCIATION; SEVERITY;
D O I
10.3233/JAD-231321
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Computer-aided machine learning models are being actively developed with clinically available biomarkers to diagnose Alzheimer's disease (AD) in living persons. Despite considerable work with cross-sectional in vivo data, many models lack validation against postmortem AD neuropathological data. Objective: Train machine learning models to classify the presence or absence of autopsy-confirmed severe AD neuropathology using clinically available features. Methods: AD neuropathological status are assessed at postmortem for participants from the National Alzheimer's Coordinating Center (NACC). Clinically available features are utilized, including demographics, Apolipoprotein E(APOE) genotype, and cortical thicknesses derived from ante-mortem MRI scans encompassing AD meta regions of interest (meta-ROI). Both logistic regression and random forest models are trained to identify linearly and nonlinearly separable features between participants with the presence (N=91, age-at-MRI = 73.6 +/- 9.24, 38 women) or absence (N=53, age-at-MRI = 68.93 +/- 19.69, 24 women) of severe AD neuropathology. The trained models are further validated in an external data set against in vivo amyloid biomarkers derived from PET imaging (amyloid-positive: N=71, age-at-MRI = 74.17 +/- 6.37, 26 women; amyloid-negative: N=73, age-at-MRI = 71.59 +/- 6.80, 41 women). Results: Our models achieve a cross-validation accuracy of 84.03% in classifying the presence or absence of severe AD neuropathology, and an external-validation accuracy of 70.14% in classifying in vivo amyloid positivity status. Conclusions: Our models show that clinically accessible features, including APOE genotype and cortical thinning encompassing AD meta-ROIs, are able to classify both postmortem confirmed AD neuropathological status and in vivo amyloid status with reasonable accuracies. These results suggest the potential utility of AD meta-ROIs in determining AD neuropathological status in living persons.
引用
收藏
页码:843 / 862
页数:20
相关论文
共 48 条
[1]   On the path to 2025: understanding the Alzheimer's disease continuum [J].
Aisen, Paul S. ;
Cummings, Jeffrey ;
Jack, Clifford R., Jr. ;
Morris, John C. ;
Sperling, Reisa ;
Froelich, Lutz ;
Jones, Roy W. ;
Dowsett, Sherie A. ;
Matthews, Brandy R. ;
Raskin, Joel ;
Scheltens, Philip ;
Dubois, Bruno .
ALZHEIMERS RESEARCH & THERAPY, 2017, 9
[2]   Comparison of different MRI-based morphometric estimates for defining neurodegeneration across the Alzheimer's disease continuum [J].
Allison, Samantha L. ;
Koscik, Rebecca L. ;
Cary, Robert P. ;
Jonaitis, Erin M. ;
Rowley, Howard A. ;
Chin, Nathaniel A. ;
Zetterberg, Henrik ;
Blennow, Kaj ;
Carlsson, Cynthia M. ;
Asthana, Sanjay ;
Bendlin, Barbara B. ;
Johnson, Sterling C. .
NEUROIMAGE-CLINICAL, 2019, 23
[4]   Amyloid Imaging: Poised for Integration into Medical Practice [J].
Anand, Keshav ;
Sabbagh, Marwan .
NEUROTHERAPEUTICS, 2017, 14 (01) :54-61
[5]   Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias [J].
Baiardi, Simone ;
Quadalti, Corinne ;
Mammana, Angela ;
Dellavalle, Sofia ;
Zenesini, Corrado ;
Sambati, Luisa ;
Pantieri, Roberta ;
Polischi, Barbara ;
Romano, Luciano ;
Suffritti, Matteo ;
Bentivenga, Giuseppe Mario ;
Randi, Vanda ;
Stanzani-Maserati, Michelangelo ;
Capellari, Sabina ;
Parchi, Piero .
ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
[6]  
Beekly D, 2017, Alzheimers Dement, V13, pP429
[7]  
Beekly DL, 2004, ALZ DIS ASSOC DIS, V18, P270
[8]   Harmonization of multi-site MRS data with ComBat [J].
Bell, Tiffany K. ;
Godfrey, Kate J. ;
Ware, Ashley L. ;
Yeates, Keith Owen ;
Harris, Ashley D. .
NEUROIMAGE, 2022, 257
[9]   Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set [J].
Besser, Lilah ;
Kukull, Walter ;
Knopman, David S. ;
Chui, Helena ;
Galasko, Douglas ;
Weintraub, Sandra ;
Jicha, Gregory ;
Carlsson, Cynthia ;
Burns, Jeffrey ;
Quinn, Joseph ;
Sweet, Robert A. ;
Rascovsky, Katya ;
Teylan, Merilee ;
Beekly, Duane ;
Thomas, George ;
Bollenbeck, Mark ;
Monsell, Sarah ;
Mock, Charles ;
Zhou, Xiao Hua ;
Thomas, Nicole ;
Robichaud, Elizabeth ;
Dean, Margaret ;
Hubbard, Janene ;
Jacka, Mary ;
Schwabe-Fry, Kristen ;
Wu, Joylee ;
Phelps, Creighton ;
Morris, John C. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2018, 32 (04) :351-358
[10]   The Revised National Alzheimer's Coordinating Center's Neuropathology Form-Available Data and New Analyses [J].
Besser, Lilah M. ;
Kukull, Walter A. ;
Teylan, Merilee A. ;
Bigio, Eileen H. ;
Cairns, Nigel J. ;
Kofler, Julia K. ;
Montine, Thomas J. ;
Schneider, Julie A. ;
Nelson, Peter T. .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2018, 77 (08) :717-726