EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model

被引:8
作者
Huang, Min [1 ,2 ]
Mi, Wenkai [2 ]
Wang, Yuming [1 ]
机构
[1] Army Engn Univ, Shijiazhuang Campus, Shijiazhuang 050003, Peoples R China
[2] Hebei Univ Sci & Technol, Shijiazhuang 050018, Peoples R China
关键词
drone detection; small target drones; YOLOv8; EMA; DCNv2; Ghostnet; OBJECT DETECTION; DRONE DETECTION; NETWORK;
D O I
10.3390/drones8070337
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In the rapidly developing drone industry, drone use has led to a series of safety hazards in both civil and military settings, making drone detection an increasingly important research field. It is difficult to overcome this challenge with traditional object detection solutions. Based on YOLOv8, we present a lightweight, real-time, and accurate anti-drone detection model (EDGS-YOLOv8). This is performed by improving the model structure, introducing ghost convolution in the neck to reduce the model size, adding efficient multi-scale attention (EMA), and improving the detection head using DCNv2 (deformable convolutional net v2). The proposed method is evaluated using two UAV image datasets, DUT Anti-UAV and Det-Fly, with a comparison to the YOLOv8 baseline model. The results demonstrate that on the DUT Anti-UAV dataset, EDGS-YOLOv8 achieves an AP value of 0.971, which is 3.1% higher than YOLOv8n's mAP, while maintaining a model size of only 4.23 MB. The research findings and methods outlined here are crucial for improving target detection accuracy and developing lightweight UAV models.
引用
收藏
页数:21
相关论文
共 51 条
  • [1] Machine Learning Inspired Sound-Based Amateur Drone Detection for Public Safety Applications
    Anwar, Muhammad Zohaib
    Kaleem, Zeeshan
    Jamalipour, Abbas
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (03) : 2526 - 2534
  • [2] T-YOLO: a lightweight and efficient detection model for nutrient buds in complex tea-plantation environments
    Bai, Bingyi
    Wang, Junshu
    Li, Jianlong
    Yu, Long
    Wen, Jiangtao
    Han, Yuxing
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (10) : 5698 - 5711
  • [3] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [4] VisDrone-MOT2021: The Vision Meets Drone Multiple Object Tracking Challenge Results
    Chen, Guanlin
    Wang, Wenguan
    He, Zhijian
    Wang, Lujia
    Yuan, Yixuan
    Zhang, Dingwen
    Zhang, Jinglin
    Zhu, Pengfei
    Van Gool, Luc
    Han, Junwei
    Hoi, Steven
    Hu, Qinghua
    Liu, Ming
    Sciarrone, Andrea
    Sun, Chao
    Garibotto, Chiara
    Duong Nguyen-Ngoc Tran
    Lavagetto, Fabio
    Haleem, Halar
    Motorcu, Hakki
    Ates, Hasan F.
    Huy-Hung Nguyen
    Jeon, Hyung-Joon
    Bisio, Igor
    Jeon, Jae Wook
    Li, Jiahao
    Long Hoang Pham
    Jeon, Moongu
    Feng, Qianyu
    Li, Shengwen
    Tai Huu-Phuong Tran
    Pan, Xiao
    Song, Young-min
    Yao, Yuehan
    Du, Yunhao
    Xu, Zhenyu
    Luo, Zhipeng
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2839 - 2846
  • [5] Efficient and lightweight grape and picking point synchronous detection model based on key point detection
    Chen, Jiqing
    Ma, Aoqiang
    Huang, Lixiang
    Li, Hongwei
    Zhang, Huiyao
    Huang, Yang
    Zhu, Tongtong
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 217
  • [6] A Deep Learning-Based Object Detection Scheme by Improving YOLOv5 for Sprouted Potatoes Datasets
    Dai, Guowei
    Hu, Lin
    Fan, Jingchao
    Yan, Shen
    Li, Ruijing
    [J]. IEEE ACCESS, 2022, 10 : 85416 - 85428
  • [7] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [8] Delleji T., 2022, Operations Research Forum, V3, P60
  • [9] Restricted Deformable Convolution-Based Road Scene Semantic Segmentation Using Surround View Cameras
    Deng, Liuyuan
    Yang, Ming
    Li, Hao
    Li, Tianyi
    Hu, Bing
    Wang, Chunxiang
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (10) : 4350 - 4362
  • [10] VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results
    Du, Dawei
    Zhu, Pengfei
    Wen, Longyin
    Bian, Xiao
    Ling, Haibin
    Hu, Qinghua
    Peng, Tao
    Zheng, Jiayu
    Wang, Xinyao
    Zhang, Yue
    Bo, Liefeng
    Shi, Hailin
    Zhu, Rui
    Kumar, Aashish
    Li, Aijin
    Zinollayev, Almaz
    Askergaliyev, Anuar
    Schumann, Arne
    Mao, Binjie
    Lee, Byeongwon
    Liu, Chang
    Chen, Changrui
    Pan, Chunhong
    Huo, Chunlei
    Yu, Da
    Cong, Dechun
    Zeng, Dening
    Pailla, Dheeraj Reddy
    Li, Di
    Wang, Dong
    Cho, Donghyeon
    Zhang, Dongyu
    Bai, Furui
    Jose, George
    Gao, Guangyu
    Liu, Guizhong
    Xiong, Haitao
    Qi, Hao
    Wang, Haoran
    Qiu, Heqian
    Li, Hongliang
    Lu, Huchuan
    Kim, Ildoo
    Kim, Jaekyum
    Shen, Jane
    Lee, Jihoon
    Ge, Jing
    Xu, Jingjing
    Zhou, Jingkai
    Meier, Jonas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 213 - 226