The Impact of Using Data Augmentation Techniques for Automatic Detection of Arrhythmia With a Deep Convolutional Neural Network Model

被引:0
|
作者
Degachi, Oumayma [1 ]
Ouni, Kais [1 ]
机构
[1] Univ Carthage, Natl Engn Sch Carthage, LR18ES44, Res Lab Smart Elect & ICT,SE&ICT Lab, Tunis, Tunisia
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024 | 2024年
关键词
data augmentation; SMOTE technique; ADASYN technique; ECG classification; CNN; CLASSIFICATION; SMOTE;
D O I
10.1109/IC_ASET61847.2024.10596206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing class imbalance through data augmentation helps in building more robust and fair classifiers that accurately represent the underlying distribution of classes in the dataset. In this paper, we use and compare two commonly known data augmentation techniques which are Synthetic Minority Over-sampling (SMOTE) and Adaptive Synthetic Sampling (ADASYN) to address class imbalance in MIT-BIH dataset. In fact, in this medical dataset, abnormal heart episodes are drastically less frequent than the normal ones. This impacts negatively the classification results due to skew data issues. Thus, we compare the performances of a CNN classification algorithm, first, without any data augmentation, then when applying the SMOTE then ADASYN techniques. The experimental findings indicate that the overall performance of the classification algorithm was boosted. ADASYN oversampling data yields the best accuracy of 95.78%.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Detection of Potholes Using a Deep Convolutional Neural Network
    Suong, Lim Kuoy
    Jangwoo, Kwon
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1244 - 1257
  • [42] A multi-branch multi-scale convolutional neural network using automatic detection of fetal arrhythmia
    Kanna, S. K. Rajesh
    Shajin, Francis H.
    Rajesh, P.
    Mannepalli, Kasiprasad
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 87 - 96
  • [43] A Novel Data Augmentation-Based Brain Tumor Detection Using Convolutional Neural Network
    Alsaif, Haitham
    Guesmi, Ramzi
    Alshammari, Badr M.
    Hamrouni, Tarek
    Guesmi, Tawfik
    Alzamil, Ahmed
    Belguesmi, Lamia
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [44] Detection of fetal brain abnormalities using data augmentation and convolutional neural network in internet of things
    Priya M.
    Nandhini M.
    Measurement: Sensors, 2023, 28
  • [45] Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network
    Kurek, Jaroslaw
    Antoniuk, Izabella
    Górski, Jaroslaw
    Jegorowa, Albina
    Świderski, Bartosz
    Kruk, Michal
    Wieczorek, Grzegorz
    Pach, Jakub
    Orlowski, Arkadiusz
    Aleksiejuk-Gawron, Joanna
    Machine Graphics and Vision, 2019, 28 (1-4): : 3 - 12
  • [46] Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network
    Chen, Junwen
    Liu, Zhigang
    Wang, Hongrui
    Nunez, Alfredo
    Han, Zhiwei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (02) : 257 - 269
  • [47] Study on automatic detection and classification of breast nodule using deep convolutional neural network system
    Wang, Feiqian
    Liu, Xiaotong
    Yuan, Na
    Qian, Buyue
    Ruan, Litao
    Yin, Changchang
    Jin, Ciping
    JOURNAL OF THORACIC DISEASE, 2020, 12 (09) : 4690 - 4701
  • [48] Automatic detection of marine oil spills from polarimetric SAR images using deep Convolutional neural network model
    Song, Wenyue
    Ma, Xiaoshuang
    Song, Wenbo
    ECOLOGICAL INDICATORS, 2024, 169
  • [49] AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK
    Al-Taani, Ahmad T.
    Al-Dagamseh, Ishraq T.
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2023, 9 (02): : 118 - 136
  • [50] Arrhythmia Detection Using Convolutional Neural Models
    Torres Ruiz, Jorge
    Buldain Perez, Julio David
    Beltran Blazquez, Jose Ramon
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2019, 800 : 120 - 127