Discovery of novel ULK1 inhibitors through machine learning-guided virtual screening and biological evaluation

被引:1
作者
Kong, Miao-Miao [1 ,2 ]
Wei, Tao [3 ]
Liu, Bo [4 ]
Xi, Zi-Xuan [1 ]
Ding, Jun-Tao [1 ]
Liu, Xin [3 ]
Li, Ke [1 ]
Qin, Tian-Li [1 ]
Qian, Zhen-Yong [1 ]
Wu, Wen-Can [5 ]
Wu, Jian-Zhang [2 ,5 ]
Li, Wu-Lan [1 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Wenzhou 325035, Zhejiang, Peoples R China
[2] Oujiang Lab, Zhejiang Lab Regenerat Med Vis & Brain Hlth, Wenzhou 325000, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Sch Pharmaceut Sci, Wenzhou 325035, Zhejiang, Peoples R China
[4] Macao Polytech Univ, Fac Appl Sci, Taipa, Macao, Peoples R China
[5] Wenzhou Med Univ, Eye Hosp, Sch Ophthalmol & Optometry, Wenzhou 325027, Peoples R China
基金
国家重点研发计划;
关键词
drug discovery; machine learning; molecular dynamics simulation; ULK1; inhibitors; virtual screening; GENERAL FORCE-FIELD; CELL-GROWTH; AUTOPHAGY; DOCKING; OPTIMIZATION; PREDICTION; ACCURATE;
D O I
10.1080/17568919.2024.2385288
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Aim: Build a virtual screening model for ULK1 inhibitors based on artificial intelligence. Materials & methods: Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million compounds. And molecular dynamics was used to explore the binding mechanism of active compounds. Results & conclusion: Possibly due to less available training data, machine learning models significantly outperform deep learning models. Among them, the Naive Bayes model has the best performance. Through virtual screening, we obtained three inhibitors with IC50 of mu M level and they all bind well to ULK1. This study provides an efficient virtual screening model and three promising compounds for the study of ULK1 inhibitors.
引用
收藏
页码:1821 / 1837
页数:17
相关论文
共 48 条
[1]   On the Use of a Convolutional Block Attention Module in Deep Learning-Based Human Activity Recognition with Motion Sensors [J].
Agac, Sumeyye ;
Incel, Ozlem Durmaz .
DIAGNOSTICS, 2023, 13 (11)
[2]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[3]   Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression [J].
Blessing, Alicia M. ;
Rajapakshe, Kimal ;
Bollu, Lakshmi Reddy ;
Shi, Yan ;
White, Mark A. ;
Pham, Alexander H. ;
Lin, Chenchu ;
Jonsson, Philip ;
Cortes, Constanza J. ;
Cheung, Edwin ;
La Spada, Albert R. ;
Bast, Robert C., Jr. ;
Merchant, Fatima A. ;
Coarfa, Cristian ;
Frigo, Daniel E. .
AUTOPHAGY, 2017, 13 (03) :506-521
[4]   Identification of Synthetic Activators of Cancer Cell Migration by Hybrid Deep Learning [J].
Bruns, Dominique ;
Gawehn, Erik ;
Kumar, Karthiga Santhana ;
Schneider, Petra ;
Baumgartner, Martin ;
Schneider, Gisbert .
CHEMBIOCHEM, 2020, 21 (04) :500-507
[5]   Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review [J].
Carpenter, Kristy A. ;
Huang, Xudong .
CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (28) :3347-3358
[6]   SiRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy [J].
Chan, Edmond Y. W. ;
Kir, Serkan ;
Tooze, Sharon A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (35) :25464-25474
[7]   Evaluation of Artificial Intelligence in Participating Structure-Based Virtual Screening for Identifying Novel Interleukin-1 Receptor Associated Kinase-1 Inhibitors [J].
Che, Jinxin ;
Feng, Ruiwei ;
Gao, Jian ;
Yu, Hongyun ;
Weng, Qinjie ;
He, Qiaojun ;
Dong, Xiaowu ;
Wu, Jian ;
Yang, Bo .
FRONTIERS IN ONCOLOGY, 2020, 10
[8]   Discovery of Dual FGFR4 and EGFR Inhibitors by Machine Learning and Biological Evaluation [J].
Chen, Xingye ;
Xie, Wuchen ;
Yang, Yan ;
Hua, Yi ;
Xing, GuoMeng ;
Liang, Li ;
Deng, Chenglong ;
Wang, Yuchen ;
Fan, Yuanrong ;
Liu, Haichun ;
Lu, Tao ;
Chen, Yadong ;
Zhang, Yanmin .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (10) :4640-4652
[9]   Autophagy in infection, inflammation and immunity [J].
Deretic, Vojo ;
Saitoh, Tatsuya ;
Akira, Shizuo .
NATURE REVIEWS IMMUNOLOGY, 2013, 13 (10) :722-737
[10]  
Doria A, 2013, NEW ENGL J MED, V368, P1845, DOI [10.1056/NEJMra1205406, 10.1056/NEJMc1303158]