Bulk universality for complex non-Hermitian matrices with independent and identically distributed entries

被引:6
作者
Maltsev, Anna [1 ]
Osman, Mohammed [1 ]
机构
[1] Queen Mary Univ London, London, England
关键词
60B20; ENSEMBLES; STATISTICS; REAL;
D O I
10.1007/s00440-024-01321-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider NxN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times N$$\end{document} matrices with complex entries that are perturbed by a complex Gaussian matrix with small variance. We prove that if the unperturbed matrix satisfies certain local laws then the bulk correlation functions are universal in the large N limit. Assuming the entries are independent and identically distributed (iid) with a common distribution that has finite moments, the Gaussian component is removed by the four moment theorem of Tao and Vu.
引用
收藏
页数:46
相关论文
共 29 条
[1]  
Alt J, 2021, Probability and Mathematical Physics, V2, P221, DOI 10.2140/pmp.2021.2.221
[2]   LOCAL INHOMOGENEOUS CIRCULAR LAW [J].
Alt, Johannes ;
Erdos, Laszlo ;
Krueger, Torben .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (01) :148-203
[3]   Local circular law for random matrices [J].
Bourgade, Paul ;
Yau, Horng-Tzer ;
Yin, Jun .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :545-595
[4]   Mesoscopic central limit theorem for non-Hermitian random matrices [J].
Cipolloni, Giorgio ;
Erdos, Laszlo ;
Schroder, Dominik .
PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (3-4) :1131-1182
[5]  
Cipolloni G, 2024, Arxiv, DOI arXiv:2301.03549
[6]   Thermalisation for Wigner matrices [J].
Cipolloni, Giorgio ;
Erdos, Laszlo ;
Schroeder, Dominik .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (08)
[7]   Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices [J].
Cipolloni, Giorgio ;
Erdos, Laszlo ;
Schroeder, Dominik .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (05) :946-1034
[8]   Edge universality for non-Hermitian random matrices [J].
Cipolloni, Giorgio ;
Erdos, Laszlo ;
Schroeder, Dominik .
PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) :1-28
[9]   Whole-animal connectomes of both Caenorhabditis elegans sexes [J].
Cook, Steven J. ;
Jarrell, Travis A. ;
Brittin, Christopher A. ;
Wang, Yi ;
Bloniarz, Adam E. ;
Yakovlev, Maksim A. ;
Nguyen, Ken C. Q. ;
Tang, Leo T. -H. ;
Bayer, Emily A. ;
Duerr, Janet S. ;
Bulow, Hannes E. ;
Hobert, Oliver ;
Hall, David H. ;
Emmons, Scott W. .
NATURE, 2019, 571 (7763) :63-+
[10]   On Wishart distribution: Some extensions [J].
Diaz-Garcia, Jose A. ;
Gutierrez-Jaimez, Ramon .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) :1296-1310