Dynamics of quantum coherence in many-body localized systems

被引:0
|
作者
Chen, Jin-Jun [1 ]
Xu, Kai [1 ]
Ren, Li-Hang [2 ]
Zhang, Yu-Ran [3 ]
Fan, Heng [4 ,5 ,6 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin Key Lab Quantum Opt & Intelligent Photon, Tianjin 300384, Peoples R China
[2] Hebei Normal Univ, Coll Phys, Hebei Key Lab Photophys Res & Applicat, Shijiazhuang 050024, Hebei, Peoples R China
[3] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[5] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[6] Henan Acad Sci, Mozi Lab, Zhengzhou 450001, Henan, Peoples R China
关键词
ANDERSON LOCALIZATION; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; THERMALIZATION; TRANSITION; QUTIP;
D O I
10.1103/PhysRevA.110.022434
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that the dynamics of quantum coherence serves as an effective probe for identifying dephasing, which is a distinctive signature of many-body localization (MBL). Quantum coherence can be utilized to measure both the local coherence of specific subsystems and the total coherence of the whole system in a consistent manner. Our results reveal that the local coherence of small subsystems decays over time following a power law in the MBL phase, while it reaches a stable value within the same time window in the Anderson-localized (AL) phase. In contrast, the total coherence of the whole system exhibits logarithmic growth during the MBL phase and reaches a stable value in the AL phase. Notably, this dynamic characteristic of quantum coherence remains robust even with weak interactions and displays unbounded behavior in infinite systems. Our results provide insights into understanding many-body dephasing phenomena in MBL systems and reveal a feasible method for identifying and characterizing MBL phases in experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [42] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [43] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [44] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [45] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [46] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [47] Maximally localized dynamical quantum embedding for solving many-body correlated systems
    Lupo, Carla
    Jamet, Francois
    Tse, Wai Hei Terence
    Rungger, Ivan
    Weber, Cedric
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06): : 410 - +
  • [48] Maximally localized dynamical quantum embedding for solving many-body correlated systems
    Carla Lupo
    François Jamet
    Wai Hei Terence Tse
    Ivan Rungger
    Cedric Weber
    Nature Computational Science, 2021, 1 : 410 - 420
  • [49] Periodically driving a many-body localized quantum system
    Bordia P.
    Lüschen H.
    Schneider U.
    Knap M.
    Bloch I.
    Nature Physics, 2017, 13 (5) : 460 - 464
  • [50] Role of coherence in many-body Quantum Reservoir Computing
    Palacios, Ana
    Martinez-Pena, Rodrigo
    Soriano, Miguel C.
    Giorgi, Gian Luca
    Zambrini, Roberta
    COMMUNICATIONS PHYSICS, 2024, 7 (01):