Dynamics of quantum coherence in many-body localized systems

被引:0
|
作者
Chen, Jin-Jun [1 ]
Xu, Kai [1 ]
Ren, Li-Hang [2 ]
Zhang, Yu-Ran [3 ]
Fan, Heng [4 ,5 ,6 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin Key Lab Quantum Opt & Intelligent Photon, Tianjin 300384, Peoples R China
[2] Hebei Normal Univ, Coll Phys, Hebei Key Lab Photophys Res & Applicat, Shijiazhuang 050024, Hebei, Peoples R China
[3] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[5] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[6] Henan Acad Sci, Mozi Lab, Zhengzhou 450001, Henan, Peoples R China
关键词
ANDERSON LOCALIZATION; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; THERMALIZATION; TRANSITION; QUTIP;
D O I
10.1103/PhysRevA.110.022434
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that the dynamics of quantum coherence serves as an effective probe for identifying dephasing, which is a distinctive signature of many-body localization (MBL). Quantum coherence can be utilized to measure both the local coherence of specific subsystems and the total coherence of the whole system in a consistent manner. Our results reveal that the local coherence of small subsystems decays over time following a power law in the MBL phase, while it reaches a stable value within the same time window in the Anderson-localized (AL) phase. In contrast, the total coherence of the whole system exhibits logarithmic growth during the MBL phase and reaches a stable value in the AL phase. Notably, this dynamic characteristic of quantum coherence remains robust even with weak interactions and displays unbounded behavior in infinite systems. Our results provide insights into understanding many-body dephasing phenomena in MBL systems and reveal a feasible method for identifying and characterizing MBL phases in experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Spatiotemporal heterogeneity of entanglement in many-body localized systems
    Artiaco, Claudia
    Balducci, Federico
    Heyl, Markus
    Russomanno, Angelo
    Scardicchio, Antonello
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [22] Coupling Identical one-dimensional Many-Body Localized Systems
    Bordia, Pranjal
    Luschen, Henrik P.
    Hodgman, Sean S.
    Schreiber, Michael
    Bloch, Immanuel
    Schneider, Ulrich
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [23] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130
  • [24] Equilibration time in many-body quantum systems
    Lezama, Talia L. M.
    Jonathan Torres-Herrera, E.
    Perez-Bernal, Francisco
    Bar Lev, Yevgeny
    Santos, Lea F.
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [25] Tower of quantum scars in a partially many-body localized system
    Iversen, Michael
    Nielsen, Anne E. B.
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [26] Entanglement dynamics and eigenstate correlations in strongly disordered quantum many-body systems
    Pain, Bikram
    Roy, Sthitadhi
    PHYSICAL REVIEW B, 2024, 110 (22)
  • [27] Nonequilibrium quantum dynamics and transport: from integrability to many-body localization
    Vasseur, Romain
    Moore, Joel E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [28] Quantum revivals and many-body localization
    Vasseur, R.
    Parameswaran, S. A.
    Moore, J. E.
    PHYSICAL REVIEW B, 2015, 91 (14)
  • [29] Many-Body Delocalization as a Quantum Avalanche
    Thiery, Thimothee
    Huveneers, Francois
    Mueller, Markus
    De Roeck, Wojciech
    PHYSICAL REVIEW LETTERS, 2018, 121 (14)
  • [30] Self-averaging in many-body quantum systems out of equilibrium: Approach to the localized phase
    Jonathan Torres-Herrera, E.
    De Tomasi, Giuseppe
    Schiulaz, Mauro
    Perez-Bernal, Francisco
    Santos, Lea F.
    PHYSICAL REVIEW B, 2020, 102 (09)