ROUGH PATHS AND HOPF ALGEBRAS

被引:0
作者
Manchon, Dominique [1 ]
机构
[1] Univ Clermont Auvergne, CNRS, Clermont Ferrand, France
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2025年 / 12卷 / 01期
关键词
Hopf algebras; rough paths; multi-indices; trees; pre-Lie algebras; post-Lie algebras; DIFFERENTIAL-EQUATIONS; RENORMALIZATION; SUBSTITUTION; INTEGRALS; THEOREM; TREES;
D O I
10.3934/jcd.2024032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Any commutative connected graded Hopf algebra gives rise to a specific notion of rough path. This article provides a review of the different Hopf algebras, providing the various kinds of rough paths which have appeared in recent literature: geometric and quasi-geometric rough paths, branched and planarly branched rough paths, and multi-index rough paths. Relations between all these variants are also described.
引用
收藏
页码:160 / 177
页数:18
相关论文
共 67 条
[1]  
AGRACHEV A. A., 1980, Journal of Soviet mathematics, V11, P135, DOI 10.1007/BF01084595
[2]  
BALINSKII AA, 1985, DOKL AKAD NAUK SSSR+, V283, P1036
[3]   An isomorphism between branched and geometric rough paths [J].
Boedihardjo, Horatio ;
Chevyrev, Ilya .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02) :1131-1148
[4]   Runge-Kutta methods and renormalization [J].
Brouder, C .
EUROPEAN PHYSICAL JOURNAL C, 2000, 12 (03) :521-534
[5]   A rough path perspective on renormalization [J].
Bruned, Y. ;
Chevyrev, I. ;
Friz, P. K. ;
Preiss, R. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (11)
[6]   Algebraic renormalisation of regularity structures [J].
Bruned, Y. ;
Hairer, M. ;
Zambotti, L. .
INVENTIONES MATHEMATICAE, 2019, 215 (03) :1039-1156
[7]  
Bruned Y, 2023, Arxiv, DOI arXiv:2311.09091
[8]  
Bruned Y, 2024, Arxiv, DOI arXiv:2301.05896
[9]   Quasi-shuffle algebras and renormalisation of rough differential equations [J].
Bruned, Yvain ;
Curry, Charles ;
Ebrahimi-Fard, Kurusch .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (01) :43-63
[10]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323, DOI 10.2478/s11533-006-0014-9