Symbolic computation in algebra, geometry, and differential equations

被引:0
作者
Winkler, Franz [1 ]
机构
[1] Johannes Kepler Univ Linz, Res Inst Symbol Computat RISC, Linz, Austria
基金
奥地利科学基金会;
关键词
Symbolic computation; Computer algebra; Exact computation; RATIONAL GENERAL-SOLUTIONS; PARAMETRIZATION; SYSTEMS; CURVES;
D O I
10.1016/j.ic.2024.105200
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this survey article we describe how symbolic computation in algebra and geometry leads to symbolic, i.e., formula solutions of algebraic differential equations. Symbolic solutions of algebraic differential equations can be derived from parametrizations of corresponding algebraic varieties. Such parametrizations in turn can be computed by elimination methods, i.e., methods for solving systems of polynomial equations. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:11
相关论文
共 39 条
[1]  
Adams W.W., 2011, Graduate Studies in Mathematics, V3
[2]  
[Anonymous], 1985, J SYMB COMPUT, V1, P1
[3]  
[Anonymous], 1983, Differentialgleichungen Lsungsmethoden und Lsungen I. Gewhnliche Differentialgleichungen
[4]  
Aroca J., 2005, P 2005 INT S SYMB AL, P29
[5]  
Becker T., 1993, Grobner Bases. A Computational Approach to Commutative Algebra
[6]  
Buchberger B., 1998, GR BNER BASES APPL L, P3, DOI DOI 10.1017/CBO9780511565847.003
[7]  
Buchberger B., 1965, An Algorithm for Finding the Bases of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal
[8]  
Buchberger B., 1998, London Mathematical Society Lecture Note Series
[9]   CALCULATION OF MULTIVARIATE POLYNOMIAL RESULTANTS [J].
COLLINS, GE .
JOURNAL OF THE ACM, 1971, 18 (04) :515-&
[10]  
Cox D., 1997, IDEALS VARIETIES ALG