Localized high concentration polymer electrolyte enabling room temperature solid-state lithium metal batteries with stable LiF-rich interphases

被引:8
作者
Lu, Junjie [1 ]
Sheng, Bifu [1 ]
Chen, Minfeng [1 ]
Xu, Min [1 ]
Zhang, Yiyi [1 ]
Zhao, Sheng [1 ]
Zhou, Qingqing [1 ]
Li, Chuyang [1 ]
Wang, Bin [1 ]
Liu, Jingjing [2 ]
Chen, Jizhang [1 ]
Lou, Zhichao [1 ]
Han, Xiang [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Coinnovat Ctr Efficient Proc & Utilizat Forestry R, Nanjing 210037, Jiangsu, Peoples R China
[2] Microsoft Corp, One Microsoft Way, Redmond, WA 98052 USA
基金
中国国家自然科学基金;
关键词
Solid-state battery; Polymer solid electrolyte; Localized high concentration; Inorganic-rich interphases; Room temperature cycling; CHEMISTRY; IONS;
D O I
10.1016/j.ensm.2024.103570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) based polymer electrolyte shows mechanical flexibility, soft and intimidate physical contact and good electrochemical stability, however, low ionic conductivity at room temperature and unstable interphases against Li metal hinder its application. In this article, we propose a universal strategy to prepare localized high concentration polymer electrolytes (LHCPE) in which high concentration lithium salt (LiTFSI) dissolved in tiny residual solvent (DMF) and the PVDF-HFP serves as solid dilution. The LHCPE regulates the solvation structure of lithium ions with anions instead of DMF solvent, allowing more anions to coordinate with Li+ and forming amount contact ion pairs (CIPs) and aggregates (AGGs). As a result, high ionic conductivity (5.9 x 10(-4) S cm(-1)) and low activation energy (0.10 eV) achieved. The LHCPE also induces the decomposition of anions-derived LiF-rich interphases, that is ionic conducive and mechanical robust, thereby greatly improving the charge transfer kinetics and stability towards Li metal anodes. Consequently, at 0.5 mA cm(-2) and 0.25 mAh cm(-2), stable and long-term cycling over 2000 h obtained under room temperature in Li//Li symmetric cells achieved. The full solid-state LFP//LHCPE//Li cells further exhibit excellent capacity retention of 82.83 % even after 1200 cycles at room temperature and a high rate of 8 C (1C=170 mA<middle dot>g(-1)). Our work shed light on the design of high-performance polymer-based composite electrolytes by manipulating the Li solvation structure.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Chemomechanical Origins of the Dynamic Evolution of Isolated Li Filaments in Inorganic Solid-State Electrolytes [J].
Cao, Tianci ;
Xu, Rong ;
Cheng, Xiaopeng ;
Wang, Mingming ;
Sun, Tao ;
Lu, Junxia ;
Liu, Xianqiang ;
Zhang, Yuefei ;
Zhang, Ze .
NANO LETTERS, 2024, 24 (06) :1843-1850
[2]   Multiple Dynamic Bonds-Driven Integrated Cathode/Polymer Electrolyte for Stable All-Solid-State Lithium Metal Batteries [J].
Chen, Jing ;
Deng, Xuetian ;
Gao, Yiyang ;
Zhao, Yuanjun ;
Kong, Xiangpeng ;
Rong, Qiang ;
Xiong, Junqiao ;
Yu, Demei ;
Ding, Shujiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
[3]   A nanocrystal garnet skeleton-derived high-performance composite solid-state electrolyte membrane [J].
Chen, Lihan ;
Huang, Xianzhun ;
Ma, Ruotong ;
Xiang, Wenyi ;
Ma, Jian ;
Wu, Yueyue ;
Yang, Ding ;
Wang, Chengwei ;
Ping, Weiwei ;
Xiang, Hongfa .
ENERGY STORAGE MATERIALS, 2024, 65
[4]   Origin of dendrite-free lithium deposition in concentrated electrolytes [J].
Chen, Yawei ;
Li, Menghao ;
Liu, Yue ;
Jie, Yulin ;
Li, Wanxia ;
Huang, Fanyang ;
Li, Xinpeng ;
He, Zixu ;
Ren, Xiaodi ;
Chen, Yunhua ;
Meng, Xianhui ;
Cheng, Tao ;
Gu, Meng ;
Jiao, Shuhong ;
Cao, Ruiguo .
NATURE COMMUNICATIONS, 2023, 14 (01)
[5]   Stable Solvent-Derived Inorganic-Rich Solid Electrolyte Interphase (SEI) for High-Voltage Lithium-Metal Batteries [J].
Chen, Ziyu ;
Wang, Bin ;
Li, Yan ;
Bai, Fengwei ;
Zhou, Yongchao ;
Li, Chengzong ;
Li, Tao .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) :28014-28020
[6]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[7]   Monodispersed Sub-1 nm Inorganic Cluster Chains in Polymers for Solid Electrolytes with Enhanced Li-Ion Transport [J].
Cheng, Yu ;
Liu, Xiaowei ;
Guo, Yaqing ;
Dong, Guangyao ;
Hu, Xinkuan ;
Zhang, Hong ;
Xiao, Xidan ;
Liu, Qin ;
Xu, Lin ;
Mai, Liqiang .
ADVANCED MATERIALS, 2023, 35 (47)
[8]   A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase [J].
Cui, Chunyu ;
Yang, Chongyin ;
Eidson, Nico ;
Chen, Ji ;
Han, Fudong ;
Chen, Long ;
Luo, Chao ;
Wang, Peng-Fei ;
Fan, Xiulin ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2020, 32 (12)
[9]   Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes [J].
DeWees, Rachel ;
Wang, Hui .
CHEMSUSCHEM, 2019, 12 (16) :3713-3725
[10]   A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries [J].
Duan, Tong ;
Cheng, Hongwei ;
Liu, Yanbo ;
Sun, Qiangchao ;
Nie, Wei ;
Lu, Xionggang ;
Dong, Panpan ;
Song, Min-Kyu .
ENERGY STORAGE MATERIALS, 2024, 65