Far UV coatings for liquid-Ar time projection chambers

被引:0
作者
Larruquert, J. I. [1 ]
Lopez-Reyes, P. [1 ]
Gutierrez-Luna, N. [1 ]
Honrado-Benitez, C. [1 ]
Pesudo, V. [2 ]
机构
[1] CSIC, GOLD, Inst Opt, Serrano 144, Madrid 28006, Spain
[2] Ctr Invest Energet Medioambientales & Tecnol, CIEMAT, Madrid 28040, Spain
来源
JOURNAL OF INSTRUMENTATION | 2024年 / 19卷 / 05期
关键词
Mirror coating; Optics; Time projection Chambers (TPC); SCINTILLATION; ARGON; MASSES; LIGHT;
D O I
10.1088/1748-0221/19/05/C05028
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Liquid Ar (LAr) and liquid Xe (LXe) time projection chambers (TPCs) are used for many applications in neutrino physics and direct dark matter searches. The performance of these detectors, particularly dual-phase ones, depends very strongly on the efficiency for detecting the far ultraviolet (FUV) scintillation light. Such detection is particularly challenging for LAr, in which the strongest scintillation feature is observed at a wavelength of 127 nm (175 nm for LXe). The current mainstream approach is covering the optical surfaces with a wavelength shifter, which absorbs de FUV light and emits at wavelengths that overlap with the optical band, where commercial devices have higher detection efficiency. This work presents coatings designed to enhance the optical properties of the detector materials and to be an alternative to the current technique. In particular, two possible coatings are proposed: narrowband and broadband FUV reflective coatings. The narrowband coatings are tuned at the FUV scintillation light. They provide a large reflectance at the design angle; additionally, these coatings are naturally transparent at longer wavelengths, which might be useful to selectively detect the wavelength of interest. Their performance is evaluated taking into account the refractive index of LAr and as a function of the angle of incidence. The same calculations are performed for an aluminium-based broadband mirror. Finally, the effect on reflectance of submerging both sorts of mirrors at liquid nitrogen temperature is presented.
引用
收藏
页数:9
相关论文
共 30 条
[21]  
Oort JH., 1932, Bull. Astron. Inst. the Netherlands., V6, P249
[22]   First time-resolved measurement of infrared scintillation light in gaseous xenon [J].
Piotter, Mona ;
Cichon, Dominick ;
Hammann, Robert ;
Joerg, Florian ;
Hoetzsch, Luisa ;
Undagoitia, Teresa Marrodan .
EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (06)
[23]   Spectroscopic analysis of the gaseous argon scintillation with a wavelength sensitive particle detector [J].
Santorelli, R. ;
Garcia, E. Sanchez ;
Abia, P. Garcia ;
Gonzalez-Diaz, D. ;
Manzano, R. Lopez ;
Morales, J. J. Martinez ;
Pesudo, V. ;
Romero, L. .
EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07)
[24]   First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Determination of cosmological parameters [J].
Spergel, DN ;
Verde, L ;
Peiris, HV ;
Komatsu, E ;
Nolta, MR ;
Bennett, CL ;
Halpern, M ;
Hinshaw, G ;
Jarosik, N ;
Kogut, A ;
Limon, M ;
Meyer, SS ;
Page, L ;
Tucker, GS ;
Weiland, JL ;
Wollack, E ;
Wright, EL .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 148 (01) :175-194
[25]   MECHANISM OF PROPORTIONAL SCINTILLATION IN ARGON, KRYPTON AND XENON [J].
SUZUKI, M ;
KUBOTA, S .
NUCLEAR INSTRUMENTS & METHODS, 1979, 164 (01) :197-199
[26]  
Thielsch R., 2003, Optical Interference Coatings, DOI [10.1007/978-3-540-36386-6, DOI 10.1007/978-3-540-36386-6]
[27]   Study of the loss of xenon scintillation in xenon-trimethylamine mixtures [J].
Trindade, A. M. F. ;
Escada, J. ;
Cortez, A. F., V ;
Borges, F. I. G. M. ;
Santos, F. P. ;
Adams, C. ;
Alvarez, V ;
Arazi, L. ;
Azevedo, C. D. R. ;
Ballester, F. ;
Benlloch-Rodriguez, J. M. ;
Botas, A. ;
Carcel, S. ;
Carrion, J., V ;
Cebrian, S. ;
Conde, C. A. N. ;
Diaz, J. ;
Diesburg, M. ;
Esteve, R. ;
Felkai, R. ;
Fernandes, L. M. P. ;
Ferrario, P. ;
Ferreira, A. L. ;
Freitas, E. D. C. ;
Goldschmidt, A. ;
Gomez-Cadenas, J. J. ;
Gonzalez-Diaz, D. ;
Guenette, R. ;
Gutierrez, R. M. ;
Hafidi, K. ;
Hauptman, J. ;
Henriques, C. A. O. ;
Hernandez, A., I ;
Hernando Morata, J. A. ;
Herrero, V ;
Johnston, S. ;
Jones, B. J. P. ;
Labarga, L. ;
Laing, A. ;
Lebrun, P. ;
Liubarsky, I ;
Lopez-March, N. ;
Losada, M. ;
Martin-Albo, J. ;
Martinez-Lema, G. ;
Martinez, A. ;
McDonald, A. D. ;
Monrabal, F. ;
Monteiro, C. M. B. ;
Mora, F. J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 905 :22-28
[28]   IMD - Software for modeling the optical properties of multilayer films [J].
Windt, DL .
COMPUTERS IN PHYSICS, 1998, 12 (04) :360-370
[29]   On the masses of nebulae and of clusters of nebulae [J].
Zwicky, F .
ASTROPHYSICAL JOURNAL, 1937, 86 (03) :217-246
[30]   Republication of: The redshift of extragalactic nebulae [J].
Zwicky, F. .
GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (01) :207-224