Explainable Machine Learning via Argumentation

被引:1
|
作者
Prentzas, Nicoletta [1 ]
Pattichis, Constantinos [1 ,2 ]
Kakas, Antonis [1 ]
机构
[1] Univ Cyprus, 1 Panepistimiou Ave, CY-2109 Nicosia, Cyprus
[2] CYENS Ctr Excellence, 23 Dimarchou Lellou Demetriadi, CY-1016 Nicosia, Cyprus
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III | 2023年 / 1903卷
关键词
Argumentation in Machine Learning; Explainable Machine Learning; Explainable Conflict Resolution; RULES;
D O I
10.1007/978-3-031-44070-0_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a general Explainable Machine Learning framework and methodology based on Argumentation (ArgEML). The flexible reasoning form of argumentation in the face of unknown and incomplete information together with the direct link of argumentation to justification and explanation enables the development of a natural form of explainablemachine learning. In this form of learning the explanations are useful not only for supporting the final predictions but also play a significant role in the learning process itself. The paper defines the basic theoretical notions of ArgEML together with its main machine learning operators and method of application. It describes how such an argumentation-based approach can give a flexible way for learning that recognizes difficult cases (with respect to the current available training data) and separates these cases out not as definite predictive cases but as cases where it is more appropriate to explainably analyze the alternative predictions. Using the argumentation-based explanations we can partition the problem space into groups characterized by the basic argumentative tension between arguments for and against the alternatives. The paper presents a first evaluation of the approach by applying the ArgEML learning methodology both on artificial and on real-life datasets.
引用
收藏
页码:371 / 398
页数:28
相关论文
共 50 条
  • [1] Informed classification of sweeteners/bitterants compounds via explainable machine learning
    Maroni, Gabriele
    Pallante, Lorenzo
    Di Benedetto, Giacomo
    Deriu, Marco A.
    Piga, Dario
    Grasso, Gianvito
    CURRENT RESEARCH IN FOOD SCIENCE, 2022, 5 : 2270 - 2280
  • [2] Automation of quantum dot measurement analysis via explainable machine learning
    Schug, Daniel
    Kovach, Tyler J.
    Wolfe, M. A.
    Benson, Jared
    Park, Sanghyeok
    Dodson, J. P.
    Corrigan, J.
    Eriksson, M. A.
    Zwolak, Justyna P.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [3] Explainable machine learning for diffraction patterns
    Nawaz, Shah
    Rahmani, Vahid
    Pennicard, David
    Setty, Shabarish Pala Ramakantha
    Klaudel, Barbara
    Graafsma, Heinz
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 : 1494 - 1504
  • [4] Explainable Machine Learning for Intrusion Detection
    Bellegdi, Sameh
    Selamat, Ali
    Olatunji, Sunday O.
    Fujita, Hamido
    Krejcar, Ondfrej
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 122 - 134
  • [5] Explainable Machine Learning in the Research of Materials Science
    Wang, Guanjie
    Liu, Shengxian
    Zhou, Jian
    Sun, Zhimei
    ACTA METALLURGICA SINICA, 2024, 60 (10) : 1345 - 1361
  • [6] Explainable machine learning for motor fault diagnosis
    Wang, Yuming
    Wang, Peng
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [7] Explainable and interpretable machine learning and data mining
    Atzmueller, Martin
    Fuernkranz, Johannes
    Kliegr, Tomas
    Schmid, Ute
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (05) : 2571 - 2595
  • [8] Explainable machine learning for project management control
    Ignacio Santos, Jose
    Pereda, Maria
    Ahedo, Virginia
    Manuel Galan, Jose
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 180
  • [9] Explainable Machine Learning for Scientific Insights and Discoveries
    Roscher, Ribana
    Bohn, Bastian
    Duarte, Marco F.
    Garcke, Jochen
    IEEE ACCESS, 2020, 8 : 42200 - 42216
  • [10] SoK: Explainable Machine Learning in Adversarial Environments
    Noppel, Maximilian
    Wressnegger, Christian
    45TH IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP 2024, 2024, : 2441 - 2459