Microdrop InkJet printed supercapacitors of graphene/graphene oxide ink for flexible electronics

被引:11
|
作者
Bayoumy, Ahmed M. [1 ,2 ,3 ]
Hessein, Amr [1 ,4 ]
Belal, Mohamed Ahmed [1 ]
Ezzat, Markos [1 ,3 ]
Ibrahim, Medhat A. [5 ,6 ]
Osman, Ahmed [7 ]
Abd El-Moneim, Ahmed [1 ,3 ]
机构
[1] Egypt Japan Univ Sci & Technol, Graphene Ctr Excellence Energy & Elect Applicat, Alexandria 21934, Egypt
[2] Ain Shams Univ, Fac Sci, Phys Dept, Biophys Grp, Cairo 11566, Egypt
[3] Egypt Japan Univ Sci & Technol, Basic & Appl Sci Inst, Nanosci Dept, New Borg El Arab 21934, Alexandria, Egypt
[4] Benha Univ, Fac Engn Shoubra, Dept Basic Sci, Cairo 11614, Egypt
[5] Natl Res Ctr, Spect Dept, 33 El Bohouth St, Dokki 12622, Giza, Egypt
[6] Natl Res Ctr, Ctr Excellence Adv Sci, Mol Modeling & Spect Lab, 33 El Bohouth St, Dokki 12622, Giza, Egypt
[7] Egypt Japan Univ Sci & Technol, Basic & Appl Sci Inst, Biotechnol Program, New Borg El Arab 21934, Alexandria, Egypt
关键词
Microdrop InkJet printing; Graphene; Graphene oxide; Flexible supercapacitors; Electrochemical energy storage devices; Molecular modelling; REDUCED GRAPHENE OXIDE; ENERGY-STORAGE; SCALABLE FABRICATION; HIGH-POWER; ON-CHIP; DENSITY; PHOSPHORUS; NANOSHEETS; EFFICIENT; ARRAYS;
D O I
10.1016/j.jpowsour.2024.235145
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The inkjet printing (IJP) technique is a highly promising technology for fabricating flexible electronics for wearable applications. The latest Microdrop IJP technology was introduced to produce flexible supercapacitors using a readily prepared graphene/graphene oxide ink. Molecular modelling concepts were conducted prior to ink formulation to investigate the interaction between graphene and GO via adsorption interactions to investigate the feasibility of adding GO to G for energy storage processes. Calculations validate that their interaction yields stable, highly reactive, and conductive structures. Molecular electrostatic potential maps reveal excellent charge distribution proposing G/GO as a potential candidate for electrochemical processes. Subsequently, GNPs/GO blend was prepared, leveraging the electric conductivity and high surface area of graphene, and the functional groups in GO to enhance graphene dispersion. Simple and interdigitated supercapacitor electrodes were fabricated without further post-printing complexities. The highly flexible interdigitated supercapacitor (100L) demonstrated notable performance with areal capacitance of 195.1 F m- 2 at 0.4 A.m- 2, power density of 1199.34 mW m- 2, energy density of 24.91 mWh.m- 2, and 80.65 % capacitance retention after 5000 cycles. The outstanding electrocapacitive performance was ascribed to GO's abundant functional groups and its 3D open structure. These factors contribute to adding a pseudocapacitive effect and enhancing charge transfer within the electrode channel-like networks.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications
    Karim, Nazmul
    Afroj, Shaila
    Tan, Sirui
    Novoselov, Kostya S.
    Yeates, Stephen G.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [22] Performance of graphene hybrid-based ink for flexible electronics
    Saidina, D. S.
    Mariatti, M.
    Zubir, S. A.
    Fontana, S.
    Herold, C.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (22) : 19906 - 19916
  • [23] Performance of graphene hybrid-based ink for flexible electronics
    D. S. Saidina
    M. Mariatti
    S. A. Zubir
    S. Fontana
    C. Hérold
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 19906 - 19916
  • [24] Graphene oxide overprints for flexible and transparent electronics
    Rogala, M.
    Wlasny, I.
    Dabrowski, P.
    Kowalczyk, P. J.
    Busiakiewicz, A.
    Kozlowski, W.
    Lipinska, L.
    Jagiello, J.
    Aksienionek, M.
    Strupinski, W.
    Krajewska, A.
    Sieradzki, Z.
    Krucinska, I.
    Puchalski, M.
    Skrzetuska, E.
    Klusek, Z.
    APPLIED PHYSICS LETTERS, 2015, 106 (04)
  • [25] Inkjet-printed graphene
    Burke, Maria
    CHEMISTRY & INDUSTRY, 2020, 84 (12) : 6 - 6
  • [26] All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications
    Nazmul Karim
    Shaila Afroj
    Sirui Tan
    Kostya S. Novoselov
    Stephen G. Yeates
    Scientific Reports, 9
  • [27] Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes
    Homola, Tomas
    Pospisil, Jan
    Krumpolec, Richard
    Soucek, Pavel
    Dzik, Petr
    Weiter, Martin
    Cernak, Mirko
    CHEMSUSCHEM, 2018, 11 (05) : 941 - 947
  • [28] Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics
    Rodriguez, Raul D.
    Khalelov, Alimzhan
    Postnikov, Pavel S.
    Lipovka, Anna
    Dorozhko, Elena
    Amin, Ihsan
    Murastov, Gennadiy, V
    Chen, Jin-Ju
    Sheng, Wenbo
    Trusova, Marina E.
    Chehimi, Mohamed M.
    Sheremet, Evgeniya
    MATERIALS HORIZONS, 2020, 7 (04) : 1030 - 1041
  • [29] Biocompatible Reduced Graphene Oxide Ink Hybridized by Wool Keratin for Flexible Strain Sensor Electronics
    Zhang, Liran
    Wu, Han
    Chen, Yang
    Li, Yongwen
    Xu, Jiawen
    Zhang, Yue
    Wang, Wenqing
    Zhao, Guoqing
    Zhang, Chen
    Li, Hongwei
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (02) : 793 - 805
  • [30] Memristive behaviour in inkjet printed graphene oxide thin layers
    Porro, S.
    Ricciardi, C.
    RSC ADVANCES, 2015, 5 (84): : 68565 - 68570