RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model

被引:1
作者
Jiang, Yong [1 ]
Wang, Shuai [1 ]
Cao, Weifeng [1 ]
Liang, Wanyong [1 ]
Shi, Jun [1 ]
Zhou, Lintao [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Dongfeng Rd, Zhengzhou 450053, Henan, Peoples R China
关键词
RDB-YOLOv8n; Lightweight; Insulator defect detection; C2f_RBE; C2f_DWFB; BiFPN;
D O I
10.1007/s11554-024-01557-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Insulator defect detection is pivotal for the reliable functioning of power transmission and distribution networks. This paper introduces an optimized lightweight model for insulator defect detection, RDB-YOLOv8n, which addresses the limitations of existing models including high parameter counts, extensive computational demands, slow detection speeds, low accuracy, and challenges in deployment to embedded terminals. First, the RDB-YOLOv8n model employs a novel lightweight module, C2f_RBE, in its Backbone architecture. This module replaces conventional Bottlenecks with RepViTBlocks and SE modules with EMA attention mechanisms, significantly enhancing detection efficiency and performance. Secondly, the Neck of the model incorporates the C2f_DWFB module, which substitutes Bottlenecks with FasterBlocks and introduces depth-wise separable convolutions (DWConv) over standard convolutions to ensure accuracy and robustness in complex environments. Additionally, the integration of a BiFPN structure within the Neck network further reduces the parameters and computational load of the model. while simultaneously improving feature fusion capabilities and detection efficiency. Experimental results show that the enhanced RDB-YOLOv8n model achieves a 41.2% reduction in parameters and a decrease in GFLOPs from 8.1 to 7.1, with a model size reduction of 39.1% and an increase in mAP(0.5) by 1.7%, meeting the requirement of real-time and efficient accurate detection of insulator defects.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Insulator Defect Detection Based on Improved YOLOv5 Model
    Chen, Yongxin
    Du, Zhenan
    Li, Hengxuan
    Zhang, Kanjun
    Wen, Pei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 123 - 127
  • [32] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [33] A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection
    Liu, Cong
    Yi, Wentao
    Liu, Min
    Wang, Yifeng
    Hu, Sheng
    Wu, Minghu
    ELECTRONICS, 2023, 12 (20)
  • [34] A lightweight algorithm for steel surface defect detection using improved YOLOv8
    Ma, Shuangbao
    Zhao, Xin
    Wan, Li
    Zhang, Yapeng
    Gao, Hongliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [35] PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8
    Liu, Yuhang
    Huang, Zhenghua
    Song, Qiong
    Bai, Kun
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [36] UAV inspection insulator defect detection method based on dynamic adaptation improved YOLOv8
    Hu, Cong
    Lv, Lingfeng
    Zhou, Tian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [37] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [38] QL-YOLOv8s: Precisely Optimized Lightweight YOLOv8 Pavement Disease Detection Model
    Guo, Jinbo
    Wang, Shenghuai
    Chen, Xiaohui
    Wang, Chen
    Zhang, Wei
    IEEE ACCESS, 2024, 12 : 128392 - 128403
  • [39] LSOD-YOLOv8s: A Lightweight Small Object Detection Model Based on YOLOv8 for UAV Aerial Images
    Li, Huikai
    Wu, Jie
    ENGINEERING LETTERS, 2024, 32 (11) : 2073 - 2082
  • [40] FE-YOLO: A Lightweight Model for Construction Waste Detection Based on Improved YOLOv8 Model
    Yang, Yizhong
    Li, Yexue
    Tao, Maohu
    BUILDINGS, 2024, 14 (09)