RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model

被引:1
|
作者
Jiang, Yong [1 ]
Wang, Shuai [1 ]
Cao, Weifeng [1 ]
Liang, Wanyong [1 ]
Shi, Jun [1 ]
Zhou, Lintao [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Dongfeng Rd, Zhengzhou 450053, Henan, Peoples R China
关键词
RDB-YOLOv8n; Lightweight; Insulator defect detection; C2f_RBE; C2f_DWFB; BiFPN;
D O I
10.1007/s11554-024-01557-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Insulator defect detection is pivotal for the reliable functioning of power transmission and distribution networks. This paper introduces an optimized lightweight model for insulator defect detection, RDB-YOLOv8n, which addresses the limitations of existing models including high parameter counts, extensive computational demands, slow detection speeds, low accuracy, and challenges in deployment to embedded terminals. First, the RDB-YOLOv8n model employs a novel lightweight module, C2f_RBE, in its Backbone architecture. This module replaces conventional Bottlenecks with RepViTBlocks and SE modules with EMA attention mechanisms, significantly enhancing detection efficiency and performance. Secondly, the Neck of the model incorporates the C2f_DWFB module, which substitutes Bottlenecks with FasterBlocks and introduces depth-wise separable convolutions (DWConv) over standard convolutions to ensure accuracy and robustness in complex environments. Additionally, the integration of a BiFPN structure within the Neck network further reduces the parameters and computational load of the model. while simultaneously improving feature fusion capabilities and detection efficiency. Experimental results show that the enhanced RDB-YOLOv8n model achieves a 41.2% reduction in parameters and a decrease in GFLOPs from 8.1 to 7.1, with a model size reduction of 39.1% and an increase in mAP(0.5) by 1.7%, meeting the requirement of real-time and efficient accurate detection of insulator defects.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Improved Road Damage Detection Algorithm Based on YOLOv8n
    Li, Xudong
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (11) : 1720 - 1730
  • [32] SMEA-YOLOv8n: A Sheep Facial Expression Recognition Method Based on an Improved YOLOv8n Model
    Yu, Wenbo
    Yang, Xiang
    Liu, Yongqi
    Xuan, Chuanzhong
    Xie, Ruoya
    Wang, Chuanjiu
    ANIMALS, 2024, 14 (23):
  • [33] Lightweight Algorithm for Rail Fastener Status Detection Based on YOLOv8n
    Zhang, Xingsheng
    Shen, Benlan
    Li, Jincheng
    Ruan, Jiuhong
    ELECTRONICS, 2024, 13 (17)
  • [34] YOLO-SDL: a lightweight wheat grain detection technology based on an improved YOLOv8n model
    Qiu, Zhaomei
    Wang, Fei
    Wang, Weili
    Li, Tingting
    Jin, Xin
    Qing, Shunhao
    Shi, Yi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [35] Improved Peanut Quality Detection Method of YOLOv8n
    Huang, Yinglai
    Niu, Dawei
    Hou, Chang
    Yang, Liusong
    Computer Engineering and Applications, 2024, 60 (23) : 257 - 267
  • [36] Improved Road Object Detection Algorithm for YOLOv8n
    Gao, Deyong
    Chen, Taida
    Miao, Lan
    Computer Engineering and Applications, 2024, 60 (16) : 186 - 197
  • [37] Improved YOLOv8n object detection of fragrant pears
    Tan H.
    Ma W.
    Tian Y.
    Zhang Q.
    Li M.
    Li M.
    Yang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (11): : 178 - 185
  • [38] A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform
    Fan, Yibing
    Zhang, Lanyong
    Li, Peng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)
  • [39] Infrared image detection of defects in lightweight solar panels based on improved MSRCR and YOLOv8n
    Hong, Yan
    Pan, Ruixian
    Su, Jingming
    Li, Mushi
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [40] Lightweight coal mine conveyor belt foreign object detection based on improved Yolov8n
    Jierui Ling
    Zhibo Fu
    Xinpeng Yuan
    Scientific Reports, 15 (1)