RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model

被引:1
作者
Jiang, Yong [1 ]
Wang, Shuai [1 ]
Cao, Weifeng [1 ]
Liang, Wanyong [1 ]
Shi, Jun [1 ]
Zhou, Lintao [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Dongfeng Rd, Zhengzhou 450053, Henan, Peoples R China
关键词
RDB-YOLOv8n; Lightweight; Insulator defect detection; C2f_RBE; C2f_DWFB; BiFPN;
D O I
10.1007/s11554-024-01557-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Insulator defect detection is pivotal for the reliable functioning of power transmission and distribution networks. This paper introduces an optimized lightweight model for insulator defect detection, RDB-YOLOv8n, which addresses the limitations of existing models including high parameter counts, extensive computational demands, slow detection speeds, low accuracy, and challenges in deployment to embedded terminals. First, the RDB-YOLOv8n model employs a novel lightweight module, C2f_RBE, in its Backbone architecture. This module replaces conventional Bottlenecks with RepViTBlocks and SE modules with EMA attention mechanisms, significantly enhancing detection efficiency and performance. Secondly, the Neck of the model incorporates the C2f_DWFB module, which substitutes Bottlenecks with FasterBlocks and introduces depth-wise separable convolutions (DWConv) over standard convolutions to ensure accuracy and robustness in complex environments. Additionally, the integration of a BiFPN structure within the Neck network further reduces the parameters and computational load of the model. while simultaneously improving feature fusion capabilities and detection efficiency. Experimental results show that the enhanced RDB-YOLOv8n model achieves a 41.2% reduction in parameters and a decrease in GFLOPs from 8.1 to 7.1, with a model size reduction of 39.1% and an increase in mAP(0.5) by 1.7%, meeting the requirement of real-time and efficient accurate detection of insulator defects.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Insulator Defect Detection Algorithm Based on Improved YOLOv11n
    Zhao, Junmei
    Miao, Shangxiao
    Kang, Rui
    Cao, Longkun
    Zhang, Liping
    Ren, Yifeng
    SENSORS, 2025, 25 (05)
  • [22] Research on improved YOLOv8n based potato seedling detection in UAV remote sensing images
    Wang, Lining
    Wang, Guanping
    Yang, Sen
    Liu, Yan
    Yang, Xiaoping
    Feng, Bin
    Sun, Wei
    Li, Hongling
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [23] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [24] A Lightweight Fire Detection Algorithm Based on the Improved YOLOv8 Model
    Ma, Shuangbao
    Li, Wennan
    Wan, Li
    Zhang, Guoqin
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [25] Insulator Defect Detection Based on the CDDCR-YOLOv8 Algorithm
    Jiang, Tingyao
    Hou, Xuan
    Wang, Min
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [26] LSKA-YOLOv8: A lightweight steel surface defect detection algorithm based on YOLOv8 improvement
    Tie, Jun
    Zhu, Chengao
    Zheng, Lu
    Wang, Haijiao
    Ruan, Chongwei
    Wu, Mian
    Xu, Ke
    Liu, Jiaqing
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 201 - 212
  • [27] Insulator Defect Detection Based on YOLOv8s-SwinT
    He, Zhendong
    Yang, Wenbin
    Liu, Yanjie
    Zheng, Anping
    Liu, Jie
    Lou, Taishan
    Zhang, Jie
    INFORMATION, 2024, 15 (04)
  • [28] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [29] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)
  • [30] YOLOv8-ACCW: Lightweight Grape Leaf Disease Detection Method Based on Improved YOLOv8
    Chen, Zuxing
    Feng, Junjie
    Zhu, Kun
    Yang, Zhenyan
    Wang, Yanhong
    Ren, Mingyue
    IEEE ACCESS, 2024, 12 : 123595 - 123608