RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model

被引:1
|
作者
Jiang, Yong [1 ]
Wang, Shuai [1 ]
Cao, Weifeng [1 ]
Liang, Wanyong [1 ]
Shi, Jun [1 ]
Zhou, Lintao [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Dongfeng Rd, Zhengzhou 450053, Henan, Peoples R China
关键词
RDB-YOLOv8n; Lightweight; Insulator defect detection; C2f_RBE; C2f_DWFB; BiFPN;
D O I
10.1007/s11554-024-01557-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Insulator defect detection is pivotal for the reliable functioning of power transmission and distribution networks. This paper introduces an optimized lightweight model for insulator defect detection, RDB-YOLOv8n, which addresses the limitations of existing models including high parameter counts, extensive computational demands, slow detection speeds, low accuracy, and challenges in deployment to embedded terminals. First, the RDB-YOLOv8n model employs a novel lightweight module, C2f_RBE, in its Backbone architecture. This module replaces conventional Bottlenecks with RepViTBlocks and SE modules with EMA attention mechanisms, significantly enhancing detection efficiency and performance. Secondly, the Neck of the model incorporates the C2f_DWFB module, which substitutes Bottlenecks with FasterBlocks and introduces depth-wise separable convolutions (DWConv) over standard convolutions to ensure accuracy and robustness in complex environments. Additionally, the integration of a BiFPN structure within the Neck network further reduces the parameters and computational load of the model. while simultaneously improving feature fusion capabilities and detection efficiency. Experimental results show that the enhanced RDB-YOLOv8n model achieves a 41.2% reduction in parameters and a decrease in GFLOPs from 8.1 to 7.1, with a model size reduction of 39.1% and an increase in mAP(0.5) by 1.7%, meeting the requirement of real-time and efficient accurate detection of insulator defects.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fabric Defect Detection Based on Improved Lightweight YOLOv8n
    Ma, Shuangbao
    Liu, Yuna
    Zhang, Yapeng
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [2] Application of lightweight YOLOv8n networks for insulator defect detection
    Ma, Fulin
    Gao, Zhengzhong
    Chai, Xinbin
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 198 - 201
  • [3] Improved YOLOv8n for Lightweight Ship Detection
    Gao, Zhiguang
    Yu, Xiaoyan
    Rong, Xianwei
    Wang, Wenqi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [4] TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
    Fang, Wenhui
    Chen, Weizhen
    SENSORS, 2025, 25 (02)
  • [5] A lightweight weed detection model for cotton fields based on an improved YOLOv8n
    Wang, Jun
    Qi, Zhengyuan
    Wang, Yanlong
    Liu, Yanyang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Improved YOLOv8n Lightweight Honeycomb Ceramic Defect- Detection Algorithm
    Hu, Haining
    Huang, Leiyang
    Yang, Honggang
    Chen, Yunxia
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [7] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [8] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [9] Research on Improved Lightweight Fish Detection Algorithm Based on Yolov8n
    Zhang, Qingyang
    Chen, Shizhe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [10] Detection of Traffic Signs Based on Lightweight YOLOv8n
    Liu, Shihong
    Li, Shiwei
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1200 - 1204