Design and Fabrication of High-Quality Two-Dimensional Silicon-Based Photonic Crystal Optical Cavity with Integrated Waveguides

被引:3
作者
Muhammad, Sohail [1 ]
Chen, Dingwei [1 ]
Xian, Chengwei [1 ]
Zhou, Jun [2 ]
Lei, Zhongke [2 ]
Kuang, Pengju [1 ]
Li, Zhe [3 ]
Wen, Guangjun [1 ]
Huang, Yongjun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sichuan Prov Engn Res Ctr Commun Technol Intellige, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Sichuan Guoruan Technol Grp Co Ltd, Chengdu 610031, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
two-dimensional high-Q optical cavity; PhC waveguides; silicon-based integrated PhC cavity; SLOW LIGHT; SLAB;
D O I
10.3390/photonics11080753
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The emergences of silicon-based photonic crystal (PhC) waveguides and two-dimensional (2D) PhC line-defect optical cavities have revolutionized the field of integrated photonics. In this paper, we design and fabricate a high-quality (high-Q) 2D silicon-based PhC optical cavity with integrated waveguides. We employ the 2D finite-difference time-domain (FDTD) method to simulate the cavity, considering two different thicknesses: 0.5 mu m and 0.25 mu m. By optimizing the line-defect and air-slot widths for the integrated PhC waveguides, we are able to achieve remarkable Q-factors for the PhC optical cavity. With a silicon thickness of 0.5 mu m, the high-Q achieves an impressively high value of 8.01 x 106, while at a silicon thickness of 0.25 mu m, it achieves 1.91 x 107. This research highlights the importance of design optimization and fabrication techniques in achieving high-Q optical devices using PhC and silicon-based structures.
引用
收藏
页数:15
相关论文
共 52 条
[1]  
Agrawal G.P., 2016, OPTICAL COMMUNICATIO, P177
[2]   Dynamic coherent perfect absorption in nonlinear metasurfaces [J].
Alaee, Rasoul ;
Vaddi, Yaswant ;
Boyd, Robert W. .
OPTICS LETTERS, 2020, 45 (23) :6414-6417
[3]   Band gap properties of two-dimensional photonic crystal structures with rectangular lattice [J].
Alipour-Banaei, Hamed ;
Serajmohammadi, Somaye ;
Mehdizadeh, Farhad ;
Andalib, Alireza .
Journal of Optical Communications, 2015, 36 (02) :109-114
[4]  
Baba T., 2021, P 2021 OPT COMM C OE, P1
[5]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[6]   Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits [J].
Boes, Andreas ;
Corcoran, Bill ;
Chang, Lin ;
Bowers, John ;
Mitchell, Arnan .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[7]   A basic introduction to ultrastable optical cavities for laser stabilization [J].
Boyd, Jamie A. ;
Lahaye, Thierry .
AMERICAN JOURNAL OF PHYSICS, 2024, 92 (01) :50-58
[8]  
Brillouin L., 1946, Wave Propagation in Periodic Structures
[9]   Subwavelength integrated photonics [J].
Cheben, Pavel ;
Halir, Robert ;
Schmid, Jens H. ;
Atwater, Harry A. ;
Smith, David R. .
NATURE, 2018, 560 (7720) :565-572
[10]   Parameter investigations on lithium-niobate-based photonic crystal optomechanical cavity [J].
Chen, Dingwei ;
Muhammad, Sohail ;
Huang, Wenyi ;
Zheng, Xiang ;
Wen, Guangjun ;
Huang, Yongjun .
RESULTS IN PHYSICS, 2023, 48