Design and Fabrication of High-Quality Two-Dimensional Silicon-Based Photonic Crystal Optical Cavity with Integrated Waveguides

被引:0
作者
Muhammad, Sohail [1 ]
Chen, Dingwei [1 ]
Xian, Chengwei [1 ]
Zhou, Jun [2 ]
Lei, Zhongke [2 ]
Kuang, Pengju [1 ]
Li, Zhe [3 ]
Wen, Guangjun [1 ]
Huang, Yongjun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sichuan Prov Engn Res Ctr Commun Technol Intellige, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Sichuan Guoruan Technol Grp Co Ltd, Chengdu 610031, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
two-dimensional high-Q optical cavity; PhC waveguides; silicon-based integrated PhC cavity; SLOW LIGHT; SLAB;
D O I
10.3390/photonics11080753
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The emergences of silicon-based photonic crystal (PhC) waveguides and two-dimensional (2D) PhC line-defect optical cavities have revolutionized the field of integrated photonics. In this paper, we design and fabricate a high-quality (high-Q) 2D silicon-based PhC optical cavity with integrated waveguides. We employ the 2D finite-difference time-domain (FDTD) method to simulate the cavity, considering two different thicknesses: 0.5 mu m and 0.25 mu m. By optimizing the line-defect and air-slot widths for the integrated PhC waveguides, we are able to achieve remarkable Q-factors for the PhC optical cavity. With a silicon thickness of 0.5 mu m, the high-Q achieves an impressively high value of 8.01 x 106, while at a silicon thickness of 0.25 mu m, it achieves 1.91 x 107. This research highlights the importance of design optimization and fabrication techniques in achieving high-Q optical devices using PhC and silicon-based structures.
引用
收藏
页数:15
相关论文
共 52 条
  • [1] Agrawal G.P., 2016, OPTICAL COMMUNICATIO, P177
  • [2] Dynamic coherent perfect absorption in nonlinear metasurfaces
    Alaee, Rasoul
    Vaddi, Yaswant
    Boyd, Robert W.
    [J]. OPTICS LETTERS, 2020, 45 (23) : 6414 - 6417
  • [3] Alipour-Banaei H, 2015, J OPT COMMUN, V36, P109, DOI 10.1515/joc-2014-0049
  • [4] Baba T., 2021, P 2021 OPT COMM C OE, P1
  • [5] Slow light in photonic crystals
    Baba, Toshihiko
    [J]. NATURE PHOTONICS, 2008, 2 (08) : 465 - 473
  • [6] Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits
    Boes, Andreas
    Corcoran, Bill
    Chang, Lin
    Bowers, John
    Mitchell, Arnan
    [J]. LASER & PHOTONICS REVIEWS, 2018, 12 (04)
  • [7] A basic introduction to ultrastable optical cavities for laser stabilization
    Boyd, Jamie A.
    Lahaye, Thierry
    [J]. AMERICAN JOURNAL OF PHYSICS, 2024, 92 (01) : 50 - 58
  • [8] Brillouin L., 1946, Wave propagation in periodic structures, V1st
  • [9] Subwavelength integrated photonics
    Cheben, Pavel
    Halir, Robert
    Schmid, Jens H.
    Atwater, Harry A.
    Smith, David R.
    [J]. NATURE, 2018, 560 (7720) : 565 - 572
  • [10] Parameter investigations on lithium-niobate-based photonic crystal optomechanical cavity
    Chen, Dingwei
    Muhammad, Sohail
    Huang, Wenyi
    Zheng, Xiang
    Wen, Guangjun
    Huang, Yongjun
    [J]. RESULTS IN PHYSICS, 2023, 48