Compatibility in Missing Data Handling Across the Prediction Model Pipeline: A Simulation Study

被引:0
作者
Tsvetanova, Antonia [1 ]
Sperrin, Matthew [1 ]
Jenkins, David [1 ]
Peek, Niels [1 ,2 ]
Buchan, Iain [3 ]
Hyland, Stephanie [4 ]
Martin, Glen [1 ]
机构
[1] Univ Manchester, Ctr Hlth Informat, Fac Biol Med & Hlth, Manchester, England
[2] Univ Manchester, Christabel Pankhurst Inst Hlth Technol Res & Inno, Manchester, England
[3] Univ Liverpool, Inst Populat Hlth, Liverpool, England
[4] Microsoft Res Cambridge, Cambridge, England
来源
MEDINFO 2023 - THE FUTURE IS ACCESSIBLE | 2024年 / 310卷
关键词
Statistical models; missing data; imputation; simulation study;
D O I
10.3233/SHTI231252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Careful handling of missing data is crucial to ensure that clinical prediction models are developed, validated, and implemented in a robust manner. We determined the bias in estimating predictive performance of different combinations of approaches for handling missing data across validation and implementation. We found four strategies that are compatible across the model pipeline and have provided recommendations for handling missing data between model validation and implementation under different missingness mechanisms.
引用
收藏
页码:1476 / 1477
页数:2
相关论文
empty
未找到相关数据