Electrochemical corrosion behavior of spinel-like high-entropy oxide (CrMnFeCoNi)3O4 and (CrMnFeCoZr)3O4/epoxy coatings

被引:0
|
作者
Lei, Yanhua [1 ]
Liu, Hui [1 ]
Zhang, Fei [1 ]
Jiang, Bochen [1 ]
Xu, Jingxiang [2 ]
机构
[1] Shanghai Maritime Univ, Inst Marine Mat Sci & Engn, Shanghai, Peoples R China
[2] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai, Peoples R China
关键词
High entropy oxides; Composite materials; Corrosion; Oxidation;
D O I
10.1016/j.matlet.2024.136816
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High entropy oxides (HEOs) are considered as an advanced materials having excellent properties like corrosion resistance, high hardness and wear resistance for a wide range of applications. In this study, coatings with two different types of high entropy oxides as epoxy fillers: (CrMnFeCoNi)3O4/EP and (CrMnFeCoZr)3O4/EP coatings were prepared and electrochemically tested for their corrosion resistance. Tests conducted in 3.5 wt% NaCl solution showed that the (CrMnFeCoNi)3O4/EP coatings exhibited better corrosion stability compared to the (CrMnFeCoNi)3O4/EP coatings. This is due to the fact that the introduction of Zr can significantly refine the grain and change the grain structure to a reticulated type, enhancing the corrosion resistance of the coating.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Electrochemical energy storage and rectification performance of high-entropy oxide (CrMnFeCoNi)3O4
    Chen, Bi
    Zhang, Wei-Bin
    Yin, Yi
    Feng, Jie
    Yang, Fan
    Yang, Kang
    Liu, Xin-Yu
    Ma, Xue-Jing
    Peng, Ying
    JOURNAL OF ENERGY STORAGE, 2025, 109
  • [2] Synthesis and electrochemical performance of novel high-entropy spinel oxide (FeCoMgCrLi)3O4
    Che, Chengjiao
    Bi, Jianqiang
    Zhang, Xihua
    Yang, Yao
    Wang, Hongyi
    Rong, Jiacheng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 974
  • [3] Synthesis, characterizations, and magnetic behavior of novel (CuNiTiZnFe)3O4 high entropy spinel oxide
    Gupta, Amit K.
    Kumari, Priyanka
    Prakash, Aashish
    Giri, Neeraj K.
    Shahi, Rohit R.
    CERAMICS INTERNATIONAL, 2022, 48 (24) : 36258 - 36263
  • [4] Preparation and Characterization of New (FeCoCrMnCuZn)3O4 High-entropy Oxide
    Liang Bingliang
    Wang Yiliang
    Ai Yunlong
    Ouyang Sheng
    Liu Changhong
    Yu Feng
    Zhang Jianjun
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (09) : 3422 - 3426
  • [5] Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction
    Liu, Chen
    Bi, Jianqiang
    Xie, Lulin
    Gao, Xicheng
    Meng, Linjie
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [6] Dielectric properties of (FeCoCrMnZn)3O4 high-entropy oxide at high pressure
    Zheng, Zhi
    Liang, Bingliang
    Gao, Jing
    Ren, Jianyi
    Liu, Zhiyong
    Hou, Xue
    Sun, Jianhui
    Mei, Shenghua
    CERAMICS INTERNATIONAL, 2023, 49 (20) : 32521 - 32527
  • [7] Spinel-Type (FeCoCrMnZn)3O4 High-Entropy Oxide: Facile Preparation and Supercapacitor Performance
    Liang, Bingliang
    Ai, Yunlong
    Wang, Yiliang
    Liu, Changhong
    Ouyang, Sheng
    Liu, Meijiao
    MATERIALS, 2020, 13 (24) : 1 - 9
  • [8] Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder
    Mao, Aiqin
    Quan, Feng
    Xiang, Hou-Zheng
    Zhang, Zhan-Guo
    Kuramoto, Koji
    Xia, Ai-Lin
    JOURNAL OF MOLECULAR STRUCTURE, 2019, 1194 : 11 - 18
  • [9] Nanocrystalline (CrMnFeCoCu)3O4 High-Entropy Oxide for Efficient Oxygen Evolution Reaction
    He, Xuanmeng
    Zhang, Zeqin
    Qiao, Tong
    Liu, Hui
    Jiang, Xianwei
    Xing, Tengfei
    Wang, Shaolan
    ACS APPLIED NANO MATERIALS, 2023, 6 (21) : 19573 - 19580
  • [10] Electrochemical charge storage properties of novel inverse spinel (CuNiZnAlFe)3O4 type high entropy oxide
    Gupta, Amit K.
    Shubham, Kumar
    Giri, Neeraj K.
    Shahi, Rohit R.
    ENERGY STORAGE, 2024, 6 (01)