Research Progress in Deep Learning for Magnetic Resonance Diagnosis of Knee Osteoarthritis

被引:1
作者
Lin Shuchen [1 ]
Wei Dejian [1 ]
Zhang Shuai [1 ]
Cao Hui [1 ]
Du Yuzheng [1 ]
机构
[1] Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
关键词
knee osteoarthritis; deep learning; magnetic resonance imaging; model optimization; ANTERIOR CRUCIATE LIGAMENT; ARTICULAR-CARTILAGE; RADIOGRAPHIC PROGRESSION; SEGMENTATION; PERFORMANCE; TESLA; TEARS; MRI;
D O I
10.3788/LOP232102
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Knee osteoarthritis is a common traumatic and degenerative bone and joint disease that can induce various pathological changes due to injuries to various knee structures. Magnetic resonance imaging plays a crucial role in the clinical diagnosis of knee osteoarthritis. Currently, the use of deep learning models to extract depth features from knee joint images and achieve segmentation and lesion recognition of various knee joint structures has become a research hotspot in the field of auxiliary diagnosis of knee joint diseases. First, this study discussed the advantages and disadvantages of various imaging techniques for the knee joint, focusing on magnetic resonance multisequence imaging technology. Then, it highlighted current status of deep learning models used for diagnosing knee joint cartilage, meniscus, and other tissue structural lesions. Furthermore, it addressed the limitations of existing recognition models and introduced two model optimization technologies: knowledge distillation and federated learning. Finally, this study concluded by outlining future research directions.
引用
收藏
页数:18
相关论文
共 99 条
[1]   Knee Osteoarthritis Detection Using an Improved CenterNet With Pixel-Wise Voting Scheme [J].
Aladhadh, Suliman ;
Mahum, Rabbia .
IEEE ACCESS, 2023, 11 :22283-22296
[2]  
Alexopoulos A., 2022, arXiv
[3]   Atlas of individual radiographic features in osteoarthritis, revised [J].
Altman, R. D. ;
Gold, G. E. .
OSTEOARTHRITIS AND CARTILAGE, 2007, 15 :A1-A56
[4]   The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis [J].
Amin, S ;
LaValley, MP ;
Guermazi, A ;
Grigoryan, M ;
Hunter, DJ ;
Clancy, M ;
Niu, JB ;
Gale, DR ;
Felson, DT .
ARTHRITIS AND RHEUMATISM, 2005, 52 (10) :3152-3159
[5]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[6]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[7]   Diagnosis of osteoarthritis: Imaging [J].
Braun, Hillary J. ;
Gold, Garry E. .
BONE, 2012, 51 (02) :278-288
[8]  
Bruno M A, 2009, Arthritis in color ebook: advanced imaging of arthritis
[9]  
Chan V, 2011, ATLAS OF ULTRASOUND-GUIDED PROCEDURES IN INTERVENTIONAL PAIN MANAGEMENT, P13, DOI 10.1007/978-1-4419-1681-5_2
[10]   Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee [J].
Chen, Hao ;
Sprengers, Andre M. J. ;
Kang, Yan ;
Verdonschot, Nico .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (05) :1015-1027