Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells

被引:2
作者
Zhao, Xiaoni [1 ]
Cao, Jiali [1 ]
Nie, Ting [1 ]
Liu, Shengzhong [1 ,2 ,3 ]
Fang, Zhimin [4 ]
机构
[1] Shaanxi Normal Univ, Shaanxi Engn Lab Adv Energy Technol, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ,Sch, Xian 710119, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Yangzhou Univ, Inst Technol Carbon Neutralizat, Yangzhou 225127, Peoples R China
基金
中国国家自然科学基金;
关键词
cations; efficiencies; photostability; solar cells; wide-bandgap perovskites; GAP PEROVSKITES; SEGREGATION;
D O I
10.1002/solr.202400521
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large voltage deficit and photoinduced halide segregation are the two primary challenges that hinder the advancement of wide-bandgap (WBG) (Eg >= 1.65 eV) perovskite solar cells (PSCs). Herein, a cation engineering approach to enhance the optoelectronic properties of formamidine-cesium (FA-Cs) WBG perovskites by incorporating methylamine (MA) as the third cation is presented. Three perovskite species with a bandgap of 1.68 eV, abbreviated as Cs0.05, Cs0.15, and Cs0.25, are systematically studied by optimizing the MA content. The incorporation of MA is found to effectively enhance the crystallinity and improve the carrier lifetimes of the three perovskite species. Moreover, the microstrain in the FA-MA-Cs perovskite films is significantly reduced due to the buffer effect of MA between the size-mismatched FA and Cs, a benefit derived from the cascade cation design. The optimized compositions for the three species are Cs0.05MA0.2FA0.75PbI2.58Br0.42, Cs0.15MA0.1FA0.75PbI2.68Br0.32, and Cs0.25MA0.03FA0.72PbI2.73Br0.27, respectively. Among these, Cs0.25MA0.03FA0.72PbI2.73Br0.27 perovskite stands out due to its high crystallinity, low microstrain, and low trap density, giving rise to the highest efficiency of 20.64% with the lowest voltage loss. This perovskite also exhibits superior air, light, and thermal stability. These findings underscore the importance of rational cation design in achieving efficient and photostable WBG PSCs. We propose a cation engineering approach to improve the optoelectronic properties of formamidine-cesium (FA-Cs) wide-bandgap (WBG) perovskites by incorporating methylamine (MA) as the third cation. MA can enhance the crystallinity, reduce microstrain, and improve the carrier lifetimes of perovskite films. Among the nine types of WBG perovskites, solar cells based on Cs0.25MA0.03FA0.72PbI2.73Br0.27 perovskite demonstrate the highest efficiency and best stability.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:9
相关论文
共 50 条
[41]   Synchronous Phase Transformation for Efficient Wide-Bandgap Perovskite Photovoltaics [J].
Li, Yifan ;
Zhao, Xinmin ;
Meng, Ni ;
Dong, Shuo ;
Yan, Shan ;
Yang, Man ;
Sun, Changjiu ;
Li, Zhiqiang ;
Yang, Shaopeng ;
Yuan, Mingjian ;
He, Tingwei .
ADVANCED MATERIALS, 2025,
[42]   Dual Optimization via Doping PCBM with Diamine for Efficient Pure-Iodide Wide-Bandgap Perovskite Solar Cells [J].
Li, Dehan ;
Nie, Ting ;
Zhao, Guangtao ;
Lv, Rongyao ;
Feng, Jiangshan ;
Ding, Jianning ;
Yang, Shangfeng ;
Liu, Shengzhong ;
Fang, Zhimin .
ADVANCED FUNCTIONAL MATERIALS, 2025,
[43]   Efficient and Thermally Stable Wide Bandgap Perovskite Solar Cells by Dual-Source Vacuum Deposition [J].
Gil-Escrig, Lidon ;
Susic, Isidora ;
Dogan, Ilker ;
Zardetto, Valerio ;
Najafi, Mehrdad ;
Zhang, Dong ;
Veenstra, Sjoerd ;
Sedani, Salar ;
Arikan, Bulent ;
Yerci, Selcuk ;
Bolink, Henk J. ;
Sessolo, Michele .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (31)
[44]   Role of Trapped Carriers Dynamics in Operating Lead Halide Wide-Bandgap Perovskite Solar Cells [J].
Zhou, Yang ;
Wong, E. Laine ;
Mroz, Wojciech ;
Folpini, Giulia ;
Martani, Samuele ;
Jimenez-Lopez, Jesus ;
Treglia, Antonella ;
Petrozza, Annamaria .
ACS ENERGY LETTERS, 2024, 9 (04) :1666-1673
[45]   Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics [J].
Bu, Tongle ;
Li, Jing ;
Lin, Qingdong ;
McMeekin, David P. ;
Sun, Jingsong ;
Wang, Mingchao ;
Chen, Weijian ;
Wen, Xiaoming ;
Mao, Wenxin ;
McNeill, Christopher R. ;
Huang, Wenchao ;
Zhang, Xiao-Li ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Bach, Udo ;
Huang, Fuzhi .
NANO ENERGY, 2020, 75
[46]   Efficient wide-bandgap perovskite solar cells with open-circuit voltage deficit below 0.4 V via hole-selective interface engineering [J].
Ji, Xiaoyu ;
Zhang, Shuo ;
Yu, Furong ;
Zhang, Huidong ;
Zhan, Liqing ;
Hu, Yue ;
Zhu, Wei-Hong ;
Wu, Yongzhen .
SCIENCE CHINA-CHEMISTRY, 2024, 67 (06) :2102-2110
[47]   One-Step Slot-Die Coating Deposition of Wide-Bandgap Perovskite Absorber for Highly Efficient Solar Cells [J].
Bernard, Sophie ;
Jutteau, Sebastien ;
Mejaouri, Salim ;
Cacovich, Stefania ;
Zimmermann, Iwan ;
Yaiche, Armelle ;
Gbegnon, Stephanie ;
Loisnard, Dominique ;
Collin, Stephane ;
Duchatelet, Aurelien ;
Sauvage, Frederic ;
Rousset, Jean .
SOLAR RRL, 2021, 5 (09)
[48]   Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction [J].
Chen, Cong ;
Song, Zhaoning ;
Xiao, Chuanxiao ;
Zhao, Dewei ;
Shrestha, Niraj ;
Li, Chongwen ;
Yang, Guang ;
Yao, Fang ;
Zheng, Xiaolu ;
Ellingson, Randy J. ;
Jiang, Chun-Sheng ;
Al-Jassim, Mowafak ;
Zhu, Kai ;
Fang, Guojia ;
Yan, Yanfa .
NANO ENERGY, 2019, 61 :141-147
[49]   Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells [J].
Tong, Jinhui ;
Jiang, Qi ;
Zhang, Fei ;
Kang, Seok Beom ;
Kim, Dong Hoe ;
Zhu, Kai .
ACS ENERGY LETTERS, 2021, 6 (01) :232-248
[50]   Perovskite Nanocomposite Layers Engineering for Efficient and Stable Solar Cells [J].
Bkkar, Muhammad Ahmad ;
Olekhnovich, Roman Olegovich ;
Uspenskaya, Mayya Valerievna .
JOURNAL OF NANO RESEARCH, 2022, 71 :71-109