Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells

被引:2
作者
Zhao, Xiaoni [1 ]
Cao, Jiali [1 ]
Nie, Ting [1 ]
Liu, Shengzhong [1 ,2 ,3 ]
Fang, Zhimin [4 ]
机构
[1] Shaanxi Normal Univ, Shaanxi Engn Lab Adv Energy Technol, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ,Sch, Xian 710119, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Yangzhou Univ, Inst Technol Carbon Neutralizat, Yangzhou 225127, Peoples R China
基金
中国国家自然科学基金;
关键词
cations; efficiencies; photostability; solar cells; wide-bandgap perovskites; GAP PEROVSKITES; SEGREGATION;
D O I
10.1002/solr.202400521
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large voltage deficit and photoinduced halide segregation are the two primary challenges that hinder the advancement of wide-bandgap (WBG) (Eg >= 1.65 eV) perovskite solar cells (PSCs). Herein, a cation engineering approach to enhance the optoelectronic properties of formamidine-cesium (FA-Cs) WBG perovskites by incorporating methylamine (MA) as the third cation is presented. Three perovskite species with a bandgap of 1.68 eV, abbreviated as Cs0.05, Cs0.15, and Cs0.25, are systematically studied by optimizing the MA content. The incorporation of MA is found to effectively enhance the crystallinity and improve the carrier lifetimes of the three perovskite species. Moreover, the microstrain in the FA-MA-Cs perovskite films is significantly reduced due to the buffer effect of MA between the size-mismatched FA and Cs, a benefit derived from the cascade cation design. The optimized compositions for the three species are Cs0.05MA0.2FA0.75PbI2.58Br0.42, Cs0.15MA0.1FA0.75PbI2.68Br0.32, and Cs0.25MA0.03FA0.72PbI2.73Br0.27, respectively. Among these, Cs0.25MA0.03FA0.72PbI2.73Br0.27 perovskite stands out due to its high crystallinity, low microstrain, and low trap density, giving rise to the highest efficiency of 20.64% with the lowest voltage loss. This perovskite also exhibits superior air, light, and thermal stability. These findings underscore the importance of rational cation design in achieving efficient and photostable WBG PSCs. We propose a cation engineering approach to improve the optoelectronic properties of formamidine-cesium (FA-Cs) wide-bandgap (WBG) perovskites by incorporating methylamine (MA) as the third cation. MA can enhance the crystallinity, reduce microstrain, and improve the carrier lifetimes of perovskite films. Among the nine types of WBG perovskites, solar cells based on Cs0.25MA0.03FA0.72PbI2.73Br0.27 perovskite demonstrate the highest efficiency and best stability.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:9
相关论文
共 50 条
[31]   Wide-Bandgap Organic-Inorganic Lead Halide Perovskite Solar Cells [J].
Tong, Yao ;
Najar, Adel ;
Wang, Le ;
Liu, Lu ;
Du, Minyong ;
Yang, Jing ;
Li, Jianxun ;
Wang, Kai ;
Liu, Shengzhong .
ADVANCED SCIENCE, 2022, 9 (14)
[32]   Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics [J].
Li, Zhen ;
Zhang, Jie ;
Wu, Shengfan ;
Deng, Xiang ;
Li, Fengzhu ;
Liu, Danjun ;
Lee, Chia-Chen ;
Lin, Francis ;
Lei, Dangyuan ;
Chueh, Chu-Chen ;
Zhu, Zonglong ;
Jen, Alex K. -Y. .
NANO ENERGY, 2020, 78
[33]   Scalable Growth of Stable Wide-Bandgap Perovskite towards Large-Scale Tandem Photovoltaics [J].
Tian, Congcong ;
Gao, Xiaofeng ;
Li, Jing ;
Pan, Junye ;
Yu, Guomu ;
Huang, Bo ;
Wen, Yongtao ;
Zhu, Hao ;
Bu, Tongle ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
SOLAR RRL, 2022, 6 (07)
[34]   Graded Heterojunction Improves Wide-Bandgap Perovskite for Highly Efficient 4-Terminal Perovskite/Silicon Tandem Solar Cells [J].
Chai, Wenming ;
Li, Lindong ;
Zhu, Weidong ;
Chen, Dazheng ;
Zhou, Long ;
Xi, He ;
Zhang, Jincheng ;
Zhang, Chunfu ;
Hao, Yue .
RESEARCH, 2023, 6
[35]   Synergetic Regulation of Oriented Crystallization and Interfacial Passivation Enables 19.1% Efficient Wide-Bandgap Perovskite Solar Cells [J].
Yu, Yue ;
Liu, Rui ;
Liu, Chang ;
Shi, Xiao-Lei ;
Yu, Hua ;
Chen, Zhi-Gang .
ADVANCED ENERGY MATERIALS, 2022, 12 (33)
[36]   Crystallization Regulation and Defect Passivation for Efficient Inverted Wide-Bandgap Perovskite Solar Cells with over 21% Efficiency [J].
Su, Gangfeng ;
Yu, Runnan ;
Dong, Yiman ;
He, Zhangwei ;
Zhang, Yuling ;
Wang, Ruyue ;
Dang, Qi ;
Sha, Shihao ;
Lv, Qianglong ;
Xu, Zhiyang ;
Liu, Zhuoxu ;
Li, Minghua ;
Tan, Zhan'ao .
ADVANCED ENERGY MATERIALS, 2024, 14 (04)
[37]   Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency [J].
Yao, Yuxin ;
Hang, Pengjie ;
Li, Biao ;
Hu, Zechen ;
Kan, Chenxia ;
Xie, Jiangsheng ;
Wang, Ying ;
Zhang, Yiqiang ;
Yang, Deren ;
Yu, Xuegong .
SMALL, 2022, 18 (38)
[38]   Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites [J].
Kim, Daehan ;
Jung, Hee Joon ;
Park, Ik Jae ;
Larson, Bryon W. ;
Dunfield, Sean P. ;
Xiao, Chuanxiao ;
Kim, Jekyung ;
Tong, Jinhui ;
Boonmongkolras, Passarut ;
Ji, Su Geun ;
Zhang, Fei ;
Pae, Seong Ryul ;
Kim, Minkyu ;
Kang, Seok Beom ;
Dravid, Vinayak ;
Berry, Joseph J. ;
Kim, Jin Young ;
Zhu, Kai ;
Kim, Dong Hoe ;
Shin, Byungha .
SCIENCE, 2020, 368 (6487) :155-+
[39]   Fluoride-assisted crystallization regulation enables efficient and stable wide-bandgap perovskite photovoltaic [J].
Su, Chao ;
Wang, Rui ;
Tao, Junlei ;
Shen, Jinliang ;
Wang, Di ;
Wang, Lixin ;
Fu, Guangsheng ;
Yang, Shaopeng ;
Yuan, Mingjian ;
He, Tingwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (12) :6565-6573
[40]   Suppressing the Photoinduced Halide Segregation in Wide-Bandgap Perovskite Solar Cells by Strain Relaxation [J].
Liu, Hui ;
Dong, Jing ;
Wang, Pengyang ;
Shi, Biao ;
Zhao, Ying ;
Zhang, Xiaodan .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (41)