Studying high-energy nuclear physics with machine learning

被引:2
作者
Pang, Long-Gang [1 ,2 ]
机构
[1] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Key Lab Quark & Lepton Phys, MOE, Wuhan 430079, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS E | 2024年 / 33卷 / 06期
基金
中国国家自然科学基金;
关键词
Machine learning; deep learning; Ai4Physics; high energy nuclear physics; HEAVY-ION COLLISIONS; EQUATION-OF-STATE; QUARK; TRANSITION; METER;
D O I
10.1142/S0218301324300091
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The research paradigm in physics has evolved through three distinct phases: empirical observation and induction, theoretical modeling and deduction and computational numerical analysis and simulation. We are now situated within a novel epoch wherein the scientific research paradigm is increasingly shaped by the preeminence of large-scale data and artificial intelligence, particularly within the realm of AI for science applications. The advent of high-energy colliders coupled with Monte Carlo simulations has given rise to an unprecedented accumulation of data. Nested within this transformative research paradigm, machine learning and artificial intelligence technologies have been extensively harnessed for the analysis of these vast data sets. Within the domain of high-energy nuclear physics, two prevalent machine learning techniques have emerged: Bayesian analysis and deep learning. The former employs comprehensive fitting methodologies that compare extensive data sets against theoretical models, enabling the extraction of critical information pertaining to the initial nuclear structure, parton distributions, the equation of state governing hot and dense nuclear matter, and the transport coefficients of the quark-gluon plasma, among other parameters. Conversely, the latter capitalizes on the unparalleled pattern recognition capabilities of deep learning to discern robust features from high-dimensional raw data, specifically targeting individual physical parameters. This paper elucidates the fundamental principles of machine learning and delineates its potential to augment high-energy nuclear physics research endeavors.
引用
收藏
页数:59
相关论文
共 50 条
[1]   Determination of Quark-Gluon-Plasma Parameters from a Global Bayesian Analysis [J].
Bass, Steffen A. ;
Bernhard, Jonah ;
Moreland, J. Scott .
NUCLEAR PHYSICS A, 2017, 967 :67-73
[2]   Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma [J].
Bernhard, Jonah E. ;
Moreland, J. Scott ;
Bass, Steffen A. .
NATURE PHYSICS, 2019, 15 (11) :1113-+
[3]   Applying Bayesian parameter estimation to relativistic heavy-ion collisions: Simultaneous characterization of the initial state and quark-gluon plasma medium [J].
Bernhard, Jonah E. ;
Moreland, J. Scott ;
Bass, Steffen A. ;
Liu, Jia ;
Heinz, Ulrich .
PHYSICAL REVIEW C, 2016, 94 (02)
[4]   Colloquium: Machine learning in nuclear physics [J].
Boehnlein, Amber ;
Diefenthaler, Markus ;
Sato, Nobuo ;
Schram, Malachi ;
Ziegler, Veronique ;
Fanelli, Cristiano ;
Hjorth-Jensen, Morten ;
Horn, Tanja ;
Kuchera, Michelle P. ;
Lee, Dean ;
Nazarewicz, Witold ;
Ostroumov, Peter ;
Orginos, Kostas ;
Poon, Alan ;
Wang, Xin-Nian ;
Scheinker, Alexander ;
Smith, Michael S. ;
Pang, Long-Gang .
REVIEWS OF MODERN PHYSICS, 2022, 94 (03)
[5]  
Chen S.-Y., 2022, PoS, VLATTICE2021, P148, DOI [10.22323/1.396.0148, DOI 10.22323/1.396.0148]
[6]   Probing heavy ion collisions using quark and gluon jet substructure with machine learning [J].
Chien, Yang-Ting .
NUCLEAR PHYSICS A, 2019, 982 :619-622
[7]  
De Santis A., 2024, PoS, VLATTICE2023, P003, DOI [10.22323/1.453.0003, DOI 10.22323/1.453.0003]
[8]   Jet Tomography in Heavy-Ion Collisions with Deep Learning [J].
Du, Yi-Lun ;
Pablos, Daniel ;
Tywoniuk, Konrad .
PHYSICAL REVIEW LETTERS, 2022, 128 (01)
[9]   Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning [J].
Du, Yi-Lun ;
Zhou, Kai ;
Steinheimer, Jan ;
Pang, Long-Gang ;
Motornenko, Anton ;
Zong, Hong-Shi ;
Wang, Xin-Nian ;
Stoecker, Horst .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (06)
[10]   Freeze-in dark matter from secret neutrino interactions [J].
Du, Yong ;
Huang, Fei ;
Li, Hao-Lin ;
Yu, Jiang-Hao .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)