A conservative Allen-Cahn model for a hydrodynamics coupled phase-field surfactant system

被引:0
作者
Wu, Jingwen [1 ]
Tan, Zhijun [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
关键词
Fluid-surfactant; Hybrid Lagrange multiplier approach; Conservative Allen-Cahn model; Second order; NUMERICAL APPROXIMATION; SOLUBLE SURFACTANTS; DROPLET DYNAMICS; INTERFACE METHOD; MEAN-CURVATURE; FLOW; EQUATION; SIMULATION; SCHEME;
D O I
10.1016/j.matcom.2024.06.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we develop a model for a binary fluid-surfactant system utilizing a coupling of two kinds conservative Allen-Cahn type equations and the Navier-Stokes equations. To ensure mass conservation, we incorporate hybrid Lagrange multipliers into the two Allen- Cahn type equations. Specifically, for the concentration variable, a global correction using a time-dependent Lagrange multiplier is utilized, while for the binary fluid variable, a space- time dependent Lagrange multiplier is applied to minimize the impact of dynamics of motion by mean curvature. We propose a linear second order scheme for practical solution of the model. Computational tests demonstrate that the proposed model is effective for the binary fluid-surfactant system and is capable of preserving the small features of interfaces.
引用
收藏
页码:42 / 65
页数:24
相关论文
共 41 条
[1]   A modified phase field approximation for mean curvature flow with conservation of the volume [J].
Brassel, M. ;
Bretin, E. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (10) :1157-1180
[2]   An unconditionally gradient stable numerical method for solving the Allen-Cahn equation [J].
Choi, Jeong-Whan ;
Lee, Hyun Geun ;
Jeong, Darae ;
Kim, Junseok .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (09) :1791-1803
[3]   DIFFUSE INTERFACE MODELLING OF SOLUBLE SURFACTANTS IN TWO-PHASE FLOW [J].
Garcke, Harald ;
Lam, Kei Fong ;
Stinner, Bjoern .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (08) :1475-1522
[4]   An energy-stable finite-difference scheme for the binary fluid-surfactant system [J].
Gu, Shuting ;
Zhang, Hui ;
Zhang, Zhengru .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 270 :416-431
[5]   An efficiently linear and totally decoupled variant of SAV approach for the binary phase-field surfactant fluid model [J].
Han, Huan ;
Liu, Shuhong ;
Zuo, Zhigang ;
Yang, Junxiang .
COMPUTERS & FLUIDS, 2022, 238
[6]   A coupled immersed boundary and immersed interface method for interfacial flows with soluble surfactant [J].
Hu, Wei-Fan ;
Lai, Ming-Chih ;
Misbah, Chaouqi .
COMPUTERS & FLUIDS, 2018, 168 :201-215
[7]   Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen-Cahn model [J].
Huang, Ziyang ;
Lin, Guang ;
Ardekani, Arezoo M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 420
[8]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[9]   A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier [J].
Kim, Junseok ;
Lee, Seunggyu ;
Choi, Yongho .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 84 :11-17
[10]   THE EFFECT OF SURFACTANTS ON THE DYNAMICS OF PHASE-SEPARATION [J].
LARADJI, M ;
GUO, H ;
GRANT, M ;
ZUCKERMANN, MJ .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (32) :6715-6728