A high performance triboelectric nanogenerator using assembled sugar naphthalimides for self-powered electronics and sensors

被引:3
|
作者
Rachamalla, Arun Kumar [1 ]
Navaneeth, Madathil [2 ]
Banoo, Tohira [1 ]
Deepshikha [1 ]
Rebaka, Vara Prasad [1 ]
Kumar, Yogendra [1 ]
Rajaboina, Rakesh Kumar [2 ]
Nagarajan, Subbiah [1 ]
机构
[1] Natl Inst Technol Warangal, Dept Chem, Assembled Organ & Hybrid Mat Res Lab, Hanumakonda 506004, Telangana, India
[2] Natl Inst Technol Warangal, Dept Phys, Energy Mat & Devices Lab, Hanamkonda 506004, Telangana, India
关键词
Molecular assembly; Gels; Naphthalimides; Triboelectric nanogenerator; Self-powered electronics; ENERGY; HUMIDITY;
D O I
10.1016/j.cej.2024.151800
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new class of N-glycosyl naphthalimide ricinoleate (NGNR) amphiphiles were generated using environmentally friendly reaction conditions in good yields. To investigate the potential applications of NGNR amphiphiles within the realm of supramolecular materials, molecular self-assembly experiments were conducted extensively across a diverse range of solvents and oils and observed the gel formation. Molecular-level interactions and assembly patterns were investigated by employing FTIR, SAXRD, UV-vis, and fluorescence spectroscopy, and a plausible assembly mechanism was proposed. The morphology of the supramolecular architecture was identified by scanning electron microscopy. Additionally, rheological studies provided insight into these soft materials' strength and processability. Further, in the process of fabricating a triboelectric nanogenerator (TENG) device, silicone rubber serves as an electron acceptor and assembled NGNR serves as an electron donor. The developed TENG demonstrated a significant improvement in performance over TENG made with amorphous NGNR, with output voltage, current, and power density of 410 V, 100 mu A, and 5.1 W/m2, 2 , respectively, highlighting the importance of the assembly process. Furthermore, TENG is used to continuously power up small electronic device (calculator), which is useful in building self-powered electronic devices. Lastly, due to its high sensitivity and stability, the TENG was used to detect the humidity of the environment in the food processing, textile, and agriculture sectors. The change in TENG response is notably significant up to 70 % relative humidity (RH). This work showcases the development of self-powered humidity sensors.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator
    Lei, Wenqian
    Lu, Shan
    Wang, Qi
    Yuan, Pengfei
    Yu, Hua
    NANO ENERGY, 2022, 95
  • [32] Advances and prospects of triboelectric nanogenerator for self-powered system
    An, Xuyao
    Wang, Chunnan
    Shao, Ruomei
    Sun, Shuqing
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2021, 12 (03) : 233 - 255
  • [33] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [34] High performance triboelectric nanogenerator based on bamboo fibers with trench structure for self-powered sensing
    Zhang, Ping
    Deng, Lu
    Zhang, Honghao
    Li, Pengfei
    Zhang, Weikang
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [35] Self-powered environmental monitoring via a triboelectric nanogenerator
    Chang, Austin
    Uy, Cameron
    Xiao, Xiao
    Chen, Jun
    NANO ENERGY, 2022, 98
  • [36] From triboelectric nanogenerator to self-powered smart floor: A minimalist design
    Ma, Jinming
    Jie, Yang
    Bian, Jie
    Li, Tao
    Cao, Xia
    Wang, Ning
    NANO ENERGY, 2017, 39 : 192 - 199
  • [37] Triboelectric nanogenerator as self-powered impact force sensor for falling object
    Aminullah
    Kasi, Ajab Khan
    Kasi, Jafar Khan
    Uddin, Moiz
    Bokhari, Muzamil
    CURRENT APPLIED PHYSICS, 2020, 20 (01) : 137 - 144
  • [38] Unity Convoluted Design of Solid Li-Ion Battery and Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Liu, Xi
    Zhao, Kun
    Wang, Zhong Lin
    Yang, Ya
    ADVANCED ENERGY MATERIALS, 2017, 7 (22)
  • [39] Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors
    Zhang, Hulin
    Yang, Ya
    Hou, Te-Chien
    Su, Yuanjie
    Hu, Chenguo
    Wang, Zhong Lin
    NANO ENERGY, 2013, 2 (05) : 1019 - 1024
  • [40] Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator
    Chen, Shuwen
    Gao, Caizhen
    Tang, Wei
    Zhu, Huarui
    Han, Yu
    Jiang, Qianwen
    Li, Tao
    Cao, Xia
    Wang, Zhonglin
    NANO ENERGY, 2015, 14 : 217 - 225