Entropy-based feature extraction for classification of EEG signal using Lifting Wavelet Transform

被引:4
作者
Ananthi, A. [1 ,4 ]
Subathra, M. S. P. [1 ,4 ]
George, S. Thomas [2 ,4 ]
Sairamya, N. J. [3 ,5 ]
机构
[1] Karunya Inst Technol & Sci, Dept Robot Engn, Coimbatore, Tamilnadu, India
[2] Karunya Inst Technol & Sci, Dept Biomed Engn, Coimbatore, Tamilnadu, India
[3] Karunya Inst Technol & Sci, Dept Dept Psychol, Coimbatore, Tamilnadu, India
[4] Karunya Inst Technol & Sci, Coimbatore, Tamilnadu, India
[5] Univ Calgary, Calgary, AB, Canada
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 09期
关键词
Brain Computer Interface; EEG; Lifting Wavelet Transform; LSTM; MOTOR IMAGERY;
D O I
10.15199/48.2024.09.27
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the realm of Brain-Computer Interface (BCI), a crucial hurdle lies in effectively classifying Motor Imagery (MI) signals. Numerous techniques have been developed for Electroencephalogram (EEG) signal-based MI classification. The proposed system transforms EEG signals into various representations through Lifting Wavelet Transform (LWT). Long Short Term Memory (LSTM) is employed for classifying the extracted feature vectors in each line. The performance of this method is evaluated on the PhysioNet database, specifically for distinguishing between right and left hand imagery move. The strategy,resulting in 100% accuracy in 19 out of 72 wavelet families of LWT. This combination proves to be a highly efficient tool for BCI-based EEG analysis, showcasing its potential as a resourceful solution in this domain.
引用
收藏
页码:146 / 150
页数:5
相关论文
共 37 条
[1]   Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm [J].
Abenna, Said ;
Nahid, Mohammed ;
Bajit, Abderrahim .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
[2]   Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning [J].
Alwasiti, Haider ;
Yusoff, Mohd Zuki ;
Raza, Kamran .
IEEE ACCESS, 2020, 8 :109949-109963
[3]  
Ananthi A., 2022, AIP C P, V2670
[4]  
Ananthi A, 2024, Computational Intelligence and Deep Learning Methods for Neuro-rehabilitation Applications, P239, DOI [10.1016/b978-0-443-13772-3.00013-3, DOI 10.1016/B978-0-443-13772-3.00013-3]
[5]   An end-to-end deep learning approach to MI-EEG signal classification for BCIs [J].
Dose, Hauke ;
Moller, Jakob S. ;
Iversen, Helle K. ;
Puthusserypady, Sadasivan .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 :532-542
[6]   Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG [J].
Fan, Chen-Chen ;
Yang, Hongjun ;
Hou, Zeng-Guang ;
Ni, Zhen-Liang ;
Chen, Sheng ;
Fang, Zhijie .
COGNITIVE NEURODYNAMICS, 2021, 15 (01) :181-189
[7]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[8]   A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN [J].
Hou, Yimin ;
Zhou, Lu ;
Jia, Shuyue ;
Lun, Xiangmin .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
[9]  
Huang ZH, 2015, Arxiv, DOI [arXiv:1508.01991, 10.48550/ARXIV.1508.01991]
[10]   A review of homogenous ensemble methods on the classification of breast cancer data [J].
Idris, Nur Farahaina ;
Ismail, Mohd Arfian .
PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (01) :101-104