Maximizing Analytical Performance in Biomolecular Discovery with LC-MS: Focus on Psychiatric Disorders

被引:0
作者
Smith, Bradley J. [1 ]
Guest, Paul C. [1 ,2 ,3 ]
Martins-de-Souza, Daniel [1 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Dept Biochem & Tissue Biol, Lab Neuroprote, Sao Paulo, Brazil
[2] Otto von Guericke Univ, Dept Psychiat, Magdeburg, Germany
[3] Otto von Guericke Univ, Lab Translat Psychiat, Magdeburg, Germany
[4] Univ Estadual Campinas, Expt Med Res Cluster, Sao Paulo, Brazil
[5] Natl Council Sci & Technol Dev, Natl Inst Biomarkers Neuropsychiat, Sao Paulo, Brazil
[6] DOr Inst Res & Educ, Sao Paulo, Brazil
[7] INCT Modelling Human Complex Dis 3D Platforms Mo, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
biomarkers; mass spectrometry; proteomics; metabolomics; clinical translatability; CHROMATOGRAPHY MASS-SPECTROMETRY; PROTEOME ANALYSIS; ARTIFICIAL-INTELLIGENCE; CEREBROSPINAL-FLUID; SCHIZOPHRENIA; BIOMARKERS; IDENTIFICATION; TECHNOLOGIES; IONIZATION; PROTEINS;
D O I
10.1146/annurev-anchem-061522-041154
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this review, we discuss the cutting-edge developments in mass spectrometry proteomics and metabolomics that have brought improvements for the identification of new disease-based biomarkers. A special focus is placed on psychiatric disorders, for example, schizophrenia, because they are considered to be not a single disease entity but rather a spectrum of disorders with many overlapping symptoms. This review includes descriptions of various types of commonly used mass spectrometry platforms for biomarker research, as well as complementary techniques to maximize data coverage, reduce sample heterogeneity, and work around potentially confounding factors. Finally, we summarize the different statistical methods that can be used for improving data quality to aid in reliability and interpretation of proteomics findings, as well as to enhance their translatability into clinical use and generalizability to new data sets.
引用
收藏
页码:25 / 46
页数:22
相关论文
共 129 条
  • [1] Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence
    Alexandrov, Theodore
    [J]. ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020, 2020, 3 : 61 - 87
  • [2] Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders
    Antunes, Andre S. L. M.
    de Almeida, Valeria
    Crunfli, Fernanda
    Carregari, Victor C.
    Martins-de-Souza, Daniel
    [J]. REVIEWS ON NEW DRUG TARGETS IN AGE-RELATED DISORDERS, PT II, 2021, 1286 : 251 - 264
  • [3] Applications and Comparison of Dimensionality Reduction Methods for Microbiome Data
    Armstrong, George
    Rahman, Gibraan
    Martino, Cameron
    McDonald, Daniel
    Gonzalez, Antonio
    Mishne, Gal
    Knight, Rob
    [J]. FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [4] LIQUID CHROMATOGRAPHY MASS SPECTROMETRY .2. CONTINUOUS MONITORING
    ARPINO, P
    BALDWIN, MA
    MCLAFFERTY, FW
    [J]. BIOMEDICAL MASS SPECTROMETRY, 1974, 1 (01): : 80 - 82
  • [5] LIQUID CHROMATOGRAPHY MASS SPECTROMETRY INTERFACE .1. DIRECT INTRODUCTION OF LIQUID SOLUTIONS INTO A CHEMICAL IONIZATION MASS-SPECTROMETER
    BALDWIN, MA
    MCLAFFER.FW
    [J]. ORGANIC MASS SPECTROMETRY, 1973, 7 (09): : 1111 - 1112
  • [6] Bangert P, 2024, Bioinformatics and Medical Informatics-Annual, V2024
  • [7] New Approach for the Identification of Isobaric and Isomeric Metabolites
    Ben Faleh, Ahmed
    Warnke, Stephan
    Van Wieringen, Teun
    Abikhodr, Ali H.
    Rizzo, Thomas R.
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (18) : 7118 - 7126
  • [8] A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases
    Bernhardt, Alexander M.
    Tiedt, Steffen
    Teupser, Daniel
    Dichgans, Martin
    Meyer, Bernhard
    Gempt, Jens
    Kuhn, Peer-Hendrik
    Simons, Mikael
    Palleis, Carla
    Weidinger, Endy
    Nuebling, Georg
    Holdt, Lesca
    Hoenikl, Lisa
    Gasperi, Christiane
    Giesbertz, Pieter
    Mueller, Stephan A.
    Breimann, Stephan
    Lichtenthaler, Stefan F.
    Kuster, Bernhard
    Mann, Matthias
    Imhof, Axel
    Barth, Teresa
    Hauck, Stefanie M.
    Zetterberg, Henrik
    Otto, Markus
    Weichert, Wilko
    Hemmer, Bernhard
    Levin, Johannes
    [J]. EBIOMEDICINE, 2023, 89
  • [9] MZA: A Data Conversion Tool to Facilitate Software Development and Artificial Intelligence Research in Multidimensional Mass Spectrometry
    Bilbao, Aivett
    Ross, Dylan H.
    Lee, Joon-Yong
    Donor, Micah T.
    Williams, Sarah M.
    Zhu, Ying
    Ibrahim, Yehia M.
    Smith, Richard D.
    Zheng, Xueyun
    [J]. JOURNAL OF PROTEOME RESEARCH, 2022, : 508 - 513
  • [10] Molecular profiling of lung cancer specimens and liquid biopsies using MALDI-TOF mass spectrometry
    Bonaparte, Eleonora
    Pesenti, Chiara
    Fontana, Laura
    Falcone, Rossella
    Paganini, Leda
    Marzorati, Anna
    Ferrero, Stefano
    Nosotti, Mario
    Mendogni, Paolo
    Bareggi, Claudia
    Sirchia, Silvia Maria
    Tabano, Silvia
    Bosari, Silvano
    Miozzo, Monica
    [J]. DIAGNOSTIC PATHOLOGY, 2018, 13