KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

被引:2
作者
Asiler, M. [1 ]
Sahillioglu, Y. [1 ]
机构
[1] Middle East Tech Univ, Dept Comp Engn, Ankara, Turkiye
关键词
<bold>CCS Concepts</bold>; center dot <bold>Computing methodologies</bold> -> <bold>Mesh geometry models</bold>;
D O I
10.1111/cgf.15137
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We compute the kernel of a shape embedded in 3D as a polygon mesh, which is defined as the set of all points that have a clear line of sight to every point of the mesh. The KerGen algorithm, short for Kernel Generation, employs efficient plane-plane and line-plane intersections, alongside point classifications based on their positions relative to planes. This approach allows for the incremental addition of kernel vertices and edges to the resulting set in a simple and systematic way. The output is a polygon mesh that represents the surface of the kernel. Extensive comparisons with the existing methods, CGAL and Polyhedron Kernel, demonstrate the remarkable timing performance of our novel additive kernel computation method. Yet another advantage of our additive process is the availability of the partial kernel at any stage, making it useful for specific geometry processing applications such as star decomposition and castable shape reconstruction.
引用
收藏
页数:13
相关论文
共 46 条
[1]   3D geometric kernel computation in polygon mesh structures☆ [J].
Asiler, Merve ;
Sahillioglu, Yusuf .
COMPUTERS & GRAPHICS-UK, 2024, 122
[2]   Indirect Predicates for Geometric Constructions [J].
Attene, Marco .
COMPUTER-AIDED DESIGN, 2020, 126
[3]   AN EFFICIENT ALGORITHM FOR DECOMPOSING A POLYGON INTO STAR-SHAPED POLYGONS [J].
AVIS, D ;
TOUSSAINT, GT .
PATTERN RECOGNITION, 1981, 13 (06) :395-398
[4]   A Benchmark for 3D Mesh Segmentation [J].
Chen, Xiaobai ;
Golovinskiy, Aleksey ;
Funkhouser, Thomas .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[5]  
CHERCHI G, 2020, ACM T GRAPHIC, P1
[6]  
Cherchi Gianmarco., 2022, ARXIV220514151
[7]  
Chun S., 2008, World Acad. Sci. Eng. Technol, V2, P2603
[8]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[9]  
de Berg M., 2000, COMPUTATIONAL GEOMET, VSecond
[10]   Compatible star decompositions of simple polygons [J].
Etzion, M ;
Rappoport, A .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1997, 3 (01) :87-95