DISCRETE-TO-CONTINUUM LINEARIZATION IN ATOMISTIC DYNAMICS

被引:0
作者
Friedrich, Manuel [1 ,2 ]
Seitz, Manuel [3 ,4 ]
Stefanelli, Ulisse [3 ,5 ,6 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[4] Univ Vienna, Vienna Sch Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[5] Univ Vienna, Vienna Res Platform Accelerating Photoreact Discov, Wahringerstr 17, A-1090 Vienna, Austria
[6] Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
Discrete-to-continuum and linearization limit; variational evolution; equation of motion; evolutive I. .-convergence; GAMMA-CONVERGENCE; GRADIENT FLOWS; SYSTEMS; LIMITS; ELASTICITY; DERIVATION; ENERGIES; PASSAGE; MODELS;
D O I
10.3934/dcds.2024115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In the stationary case, atomistic interaction energies can be proved to I.-converge to classical elasticity models in the simultaneous atomistic-tocontinuum and linearization limit [19, 41]. The aim of this note is that of extending the convergence analysis to the dynamic setting. Moving within the framework of [41], we prove that solutions of the equation of motion driven by atomistic deformation energies converge to the solutions of the momentum equation for the corresponding continuum energy of linearized elasticity. By recasting the evolution problems in their equivalent energy-dissipationinertia-principle form, we directly argue at the variational level of evolutionary I.-convergence [33, 37]. This in particular ensures the pointwise in time convergence of the energies.
引用
收藏
页码:847 / 874
页数:28
相关论文
共 50 条
  • [41] Comparison of several staggered atomistic-to-continuum concurrent coupling strategies
    Davydov, D.
    Pelteret, J-P.
    Steinmann, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 277 : 260 - 280
  • [42] Degeneracies of discrete and continuum states with the Dirac sea in the pair-creation process
    Lv, Q. Z.
    Liu, Y.
    Li, Y. J.
    Grobe, R.
    Su, Q.
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [43] Continuum Limits of Discrete Models via Γ-Convergence
    Scardia, Lucia
    MACROSCOPIC AND LARGE SCALE PHENOMENA: COARSE GRAINING, MEAN FIELD LIMITS AND ERGODICITY, 2016, 3 : 145 - 186
  • [44] Continuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings
    Del Nin, Giacomo
    Petrache, Mircea
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [45] Characterization of fracture processes by continuum and discrete modelling
    Kaliske, M.
    Dal, H.
    Fleischhauer, R.
    Jenkel, C.
    Netzker, C.
    COMPUTATIONAL MECHANICS, 2012, 50 (03) : 303 - 320
  • [46] From discrete to continuum: A Young measure approach
    Paroni, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (02): : 328 - 348
  • [47] Atomistic spin dynamics of the Cu-Mn spin-glass alloy
    Skubic, B.
    Peil, O. E.
    Hellsvik, J.
    Nordblad, P.
    Nordstrom, L.
    Eriksson, O.
    PHYSICAL REVIEW B, 2009, 79 (02):
  • [48] Accounting for quantum effects in atomistic spin dynamics
    Berritta, M.
    Scali, S.
    Cerisola, F.
    Anders, J.
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [49] Atomistic and continuum modeling of nanoparticles: Elastic fields, surface constants, and effective stiffness
    Kushch, V. I.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2023, 183
  • [50] Coupling atomistic and continuum hydrodynamics through a mesoscopic model: Application to liquid water
    Delgado-Buscalioni, Rafael
    Kremer, Kurt
    Praprotnik, Matej
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24)