DISCRETE-TO-CONTINUUM LINEARIZATION IN ATOMISTIC DYNAMICS

被引:0
作者
Friedrich, Manuel [1 ,2 ]
Seitz, Manuel [3 ,4 ]
Stefanelli, Ulisse [3 ,5 ,6 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[4] Univ Vienna, Vienna Sch Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[5] Univ Vienna, Vienna Res Platform Accelerating Photoreact Discov, Wahringerstr 17, A-1090 Vienna, Austria
[6] Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
Discrete-to-continuum and linearization limit; variational evolution; equation of motion; evolutive I. .-convergence; GAMMA-CONVERGENCE; GRADIENT FLOWS; SYSTEMS; LIMITS; ELASTICITY; DERIVATION; ENERGIES; PASSAGE; MODELS;
D O I
10.3934/dcds.2024115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In the stationary case, atomistic interaction energies can be proved to I.-converge to classical elasticity models in the simultaneous atomistic-tocontinuum and linearization limit [19, 41]. The aim of this note is that of extending the convergence analysis to the dynamic setting. Moving within the framework of [41], we prove that solutions of the equation of motion driven by atomistic deformation energies converge to the solutions of the momentum equation for the corresponding continuum energy of linearized elasticity. By recasting the evolution problems in their equivalent energy-dissipationinertia-principle form, we directly argue at the variational level of evolutionary I.-convergence [33, 37]. This in particular ensures the pointwise in time convergence of the energies.
引用
收藏
页码:847 / 874
页数:28
相关论文
共 50 条
  • [31] On continuum dynamics
    Romano, Giovanni
    Barretta, Raffaele
    Diaco, Marina
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [32] AN ATOMISTIC/CONTINUUM COUPLING METHOD USING ENRICHED BASES
    Chen, Jingrun
    Garcia-Cervera, Carlos J.
    Li, Xiantao
    MULTISCALE MODELING & SIMULATION, 2015, 13 (03) : 766 - 789
  • [33] A CONTINUUM MODEL FOR THE DYNAMICS OF DISLOCATION ARRAYS
    Zhu, Xiaohong
    Xiang, Yang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (04) : 1081 - 1103
  • [34] A derivation of continuum nonlinear plate theory from atomistic models
    Schmidt, Bernd
    MULTISCALE MODELING & SIMULATION, 2006, 5 (02) : 664 - 694
  • [35] A nonlocal continuum model based on atomistic model at zero temperature
    Xiang, Meizhen
    Cui, Junzhi
    Tian, Xia
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10
  • [36] Discrete-time Flatness and Linearization along Trajectories
    Kolar, Bernd
    Diwold, Johannes
    Gstoettner, Conrad
    Schoeberl, Markus
    IFAC PAPERSONLINE, 2023, 56 (02): : 2877 - +
  • [37] Discrete Time TASEP in Heterogeneous Continuum
    Blank, M.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (03) : 531 - 552
  • [38] The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip
    Xia, Shengxu
    Belak, James
    El-Azab, Anter
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (07)
  • [39] An Analysis of Crystal Cleavage in the Passage from Atomistic Models to Continuum Theory
    Friedrich, Manuel
    Schmidt, Bernd
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (01) : 263 - 308
  • [40] Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires
    Weinberger, Christopher R.
    Jennings, Andrew T.
    Kang, Keonwook
    Greer, Julia R.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (01) : 84 - 103