DISCRETE-TO-CONTINUUM LINEARIZATION IN ATOMISTIC DYNAMICS

被引:0
|
作者
Friedrich, Manuel [1 ,2 ]
Seitz, Manuel [3 ,4 ]
Stefanelli, Ulisse [3 ,5 ,6 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[4] Univ Vienna, Vienna Sch Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[5] Univ Vienna, Vienna Res Platform Accelerating Photoreact Discov, Wahringerstr 17, A-1090 Vienna, Austria
[6] Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
Discrete-to-continuum and linearization limit; variational evolution; equation of motion; evolutive I. .-convergence; GAMMA-CONVERGENCE; GRADIENT FLOWS; SYSTEMS; LIMITS; ELASTICITY; DERIVATION; ENERGIES; PASSAGE; MODELS;
D O I
10.3934/dcds.2024115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In the stationary case, atomistic interaction energies can be proved to I.-converge to classical elasticity models in the simultaneous atomistic-tocontinuum and linearization limit [19, 41]. The aim of this note is that of extending the convergence analysis to the dynamic setting. Moving within the framework of [41], we prove that solutions of the equation of motion driven by atomistic deformation energies converge to the solutions of the momentum equation for the corresponding continuum energy of linearized elasticity. By recasting the evolution problems in their equivalent energy-dissipationinertia-principle form, we directly argue at the variational level of evolutionary I.-convergence [33, 37]. This in particular ensures the pointwise in time convergence of the energies.
引用
收藏
页码:847 / 874
页数:28
相关论文
共 50 条
  • [21] CONTINUUM LIMIT AND STOCHASTIC HOMOGENIZATION OF DISCRETE FERROMAGNETIC THIN FILMS
    Braides, Andrea
    Cicalese, Marco
    Ruf, Matthias
    ANALYSIS & PDE, 2018, 11 (02): : 499 - 553
  • [22] Challenges in Atomistic-to-Continuum Coupling
    Fackeldey, Konstantin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [23] From atomistic systems to linearized continuum models for elastic materials with voids
    Friedrich, Manuel
    Kreutz, Leonard
    Zemas, Konstantinos
    NONLINEARITY, 2023, 36 (01) : 679 - 733
  • [24] Discrete-Continuum Transition in Modelling Nanomaterials
    Pyrz, Ryszard
    Bochenek, Bogdan
    IUTAM SYMPOSIUM ON MODELLING NANOMATERIALS AND NANOSYSTEMS, 2009, 13 : 63 - +
  • [25] Atomistic to continuum limits for computational materials science
    Blanc, Xavier
    Le Bris, Claude
    Lions, Pierre-Louis
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (02): : 391 - 426
  • [26] A Long-Range Electric Field Solver for Molecular Dynamics Based on Atomistic-to-Continuum Modeling
    Templeton, Jeremy A.
    Jones, Reese E.
    Lee, Jonathan W.
    Zimmerman, Jonathan A.
    Wong, Bryan M.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (06) : 1736 - 1749
  • [27] Atomic to Continuum Passage for Nanotubes: A Discrete Saint-Venant Principle and Error Estimates
    El Kass, D.
    Monneau, R.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (01) : 25 - 128
  • [28] A variational model of interaction between continuum and discrete systems
    Alicandro, Roberto
    Ansini, Nadia
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (10) : 1957 - 2008
  • [29] Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics
    Matsiaka, Oleksii M.
    Penington, Catherine J.
    Baker, Ruth E.
    Simpson, Matthew J.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (04) : 738 - 757
  • [30] Lattice dynamics from a continuum viewpoint
    Charlotte, Miguel
    Truskinovsky, Lev
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (08) : 1508 - 1544