Berry-Esseen bound for the Brownian motions on hyperbolic spaces

被引:0
作者
Shiozawa, Yuichi [1 ]
机构
[1] Doshisha Univ, Fac Sci & Engn, Dept Math Sci, Kyoto 6100394, Japan
关键词
Berry-Esseen bound; Brownian motion; hyperbolic space; Millson formula; ASYMPTOTIC-BEHAVIOR; HEAT KERNEL;
D O I
10.4064/sm230909-2-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the uniform convergence rate for the Gaussian fluctuation of the radial part of the Brownian motion on a hyperbolic space. We also show that this result is sharp if the dimension of the hyperbolic space is 2 or general odd. Our approach is based on the repetitive use of the Millson formula and the integration by parts formula.
引用
收藏
页码:213 / 241
页数:30
相关论文
共 15 条
[1]   ASYMPTOTIC FINITE PROPAGATION SPEED FOR HEAT DIFFUSION ON CERTAIN RIEMANNIAN-MANIFOLDS [J].
ANKER, JP ;
SETTI, AG .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 103 (01) :50-61
[2]  
[Anonymous], 1994, J. Theoret. Probab.
[3]  
[Anonymous], 2007, Brownian Motion and Stochastic Calculus, P451
[4]   On the Asymptotic Behavior of the Hyperbolic Brownian Motion [J].
Cammarota, Valentina ;
De Gregorio, Alessandro ;
Macci, Claudio .
JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (06) :1550-1568
[5]  
Davies E. B., 1989, Cambridge Tracts in Mathematics, V92
[6]   HEAT KERNEL BOUNDS ON HYPERBOLIC SPACE AND KLEINIAN-GROUPS [J].
DAVIES, EB ;
MANDOUVALOS, N .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1988, 57 :182-208
[7]  
Durrett R., 2010, Probability: theory and examples, V4th edition
[8]   The heat kernel on hyperbolic space [J].
Grigor'yan, A ;
Noguchi, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :643-650
[9]  
Grigor'yan A, 2009, INT MAT SER, V9, P209
[10]  
Gruet J. C., 1996, Stoch. Stoch. Rep., V56, P53, DOI DOI 10.1080/17442509608834035