Hierarchical Co-Ni layered double hydroxide nanosheets enwrapped CuO nanorods by electrodeposition for excellent energy storage devices

被引:1
作者
Wang, Yan [1 ]
Wang, Hanbo [1 ]
Wan, Sheng [1 ]
Pei, Dongyu [1 ]
Wang, Ziming [1 ]
Xu, Shaopeng [2 ]
Tian, Yumei [1 ]
Lu, Haiyan [1 ,3 ,4 ]
机构
[1] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Peoples R China
[3] Jilin Univ, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
[4] 2699 Qianjin St, Changchun 130012, Peoples R China
关键词
Co - Ni LDH nanosheets; Electrodeposition; High specific capacitance; Supercapacitor; Superior cycling stability; CARBON MATERIALS; NANOWIRE ARRAYS; COPPER FOAM; PERFORMANCE; HYBRID; NICKEL; COMPOSITE; NANOPARTICLES; MICROFLOWERS; DESIGN;
D O I
10.1016/j.est.2024.112996
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A hierarchical structure consisting of Co-Ni - Ni layered double hydroxide nanosheets (LDH-NSs) enwrapped copper oxide nanorods (CuO-NRs) was synthesized in situ on the surface of copper foam (CF) through direct oxidation and electrodeposition methods. The CF skeleton provided the desired electrical conductivity, while in-situ oxidation of CuO-NRs eliminated the need for binders. Moreover, the uniform growth of LDH-NSs on CuONRs via electrodeposition facilitated the formation of a stratified structure, effectively inhibiting the aggregation of LDH-NSs and providing ample active sites for the adsorption/desorption and transportation of electrolyte ions. Adjusting the molar ratio of Co2+ 2+ to Ni2+ 2+ in the electrolyte influenced the electrochemical properties, resulting in efficient in-situ growth, a porous structure, and uniform morphological control. The CF@CuO@Co-Ni LDH-2 (Co: Ni =1:2) sample demonstrated the most favorable electrochemical performance, primarily attributed to its superior Ni: Co synergistic effect. As a wonderful electrode material, it exhibited a high specific capacitance of 2628.4 F g- 1 at a current density of 2 A g- 1 . Even after 5000 cycles at 20 A g- 1 , it maintained an outstanding retention rate of 95.00 %. As expected, the assembled asymmetric supercapacitor displayed a remarkable energy density of 101.54 Wh kg-1 . The supercapacitor exhibited an impressive retention rate of 87.57 % after 10,000 cycles at 20 A g- 1 . This study highlighted the potential of hierarchical electrode materials prepared via direct oxidation and electrodeposition for supercapacitor applications. The electrodeposition method preserved all active components on the carrier surface and improved the utilization rate of active sites, while avoiding the use of adhesives, templates, or surfactants, simplifying the procedure.
引用
收藏
页数:11
相关论文
共 66 条
[1]   ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes [J].
Askari, Mohammad Bagher ;
Salarizadeh, Parisa ;
Seifi, Majid ;
Zadeh, Mohammad Hassan Ramezan ;
Di Bartolomeo, Antonio .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 860
[2]   Effect of the lead deposition on the performance of the negative electrode in an aqueous lead-carbon hybrid capacitor [J].
Bao, Jinpeng ;
Lin, Nan ;
Lin, Haibo ;
Guo, Jiaxiang ;
Gao, Hongyu ;
Gao, Weiqi .
JOURNAL OF ENERGY CHEMISTRY, 2021, 55 :509-516
[3]   Carbons and Electrolytes for Advanced Supercapacitors [J].
Beguin, Francois ;
Presser, Volker ;
Balducci, Andrea ;
Frackowiak, Elzbieta .
ADVANCED MATERIALS, 2014, 26 (14) :2219-2251
[4]   Harnessing morphological alteration from microflowers to nanoparticles and cations synergy (Co:Ni) in binder-free cobalt nickel vanadate thin film cathodes synthesized via SILAR method for hybrid supercapacitor devices [J].
Bhosale, Shraddha B. ;
Kumbhar, Sambhaji S. ;
Patil, Sumita S. ;
Ransing, Akshay ;
Parale, Vinayak G. ;
Lokhande, Chandrakant D. ;
Gunjakar, Jayavant L. ;
Park, Hyung-Ho ;
Patil, Umakant M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 666 :101-117
[5]   Metal-Organic Framework Materials for Electrochemical Supercapacitors [J].
Cao, Ziwei ;
Momen, Roya ;
Tao, Shusheng ;
Xiong, Dengyi ;
Song, Zirui ;
Xiao, Xuhuan ;
Deng, Wentao ;
Hou, Hongshuai ;
Yasar, Sedat ;
Altin, Sedar ;
Bulut, Faith ;
Zou, Guoqiang ;
Ji, Xiaobo .
NANO-MICRO LETTERS, 2022, 14 (01)
[6]   Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor [J].
Chen, WenQiang ;
Wang, Jiao ;
Ma, K. Y. ;
Li, M. ;
Guo, S. H. ;
Liu, F. ;
Cheng, J. P. .
APPLIED SURFACE SCIENCE, 2018, 451 :280-288
[7]   Carbon dots integrated into nickel-cobalt hydroxide as superior electrode for supercapattery [J].
Cui, Yangbo ;
Han, Chong ;
Si, Huizheng ;
Liu, Kaiyu ;
Liu, Hongtao ;
Sang, Shangbin ;
Wu, Qiumei .
ELECTROCHIMICA ACTA, 2023, 451
[8]   Carbon/carbon supercapacitors [J].
Frackowiak, Elzbieta ;
Abbas, Qamar ;
Beguin, Francois .
JOURNAL OF ENERGY CHEMISTRY, 2013, 22 (02) :226-240
[9]   Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials [J].
Gou, Jianxia ;
Xie, Shengli ;
Liu, Yanru ;
Liu, Chenguang .
ELECTROCHIMICA ACTA, 2016, 210 :915-924
[10]   Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor [J].
Guan, Bing ;
Li, Yu ;
Yin, Biyue ;
Liu, Kefan ;
Wang, Dawei ;
Zhang, Huaihao ;
Cheng, Changjing .
CHEMICAL ENGINEERING JOURNAL, 2017, 308 :1165-1173