Existence and uniqueness of positive solutions for a Hadamard fractional integral boundary value problem

被引:0
作者
Ahmadkhanlu, Asghar [1 ]
Jamshidzadeh, Shabnam [1 ]
机构
[1] Azerbaijan Shahid Madani Univ, Fac Basic Sci, Dept Math, Km 35 Tabriz Maragheh Rd, Tabriz, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2024年 / 12卷 / 04期
关键词
Hadamard fractional derivative; Boundary value problem; Integral boundary condition; CAPUTO;
D O I
10.22034/cmde.2023.51601.2150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to study a kind of boundary value problem with an integral boundary condition including Hadamard-type fractional differential equations. To do this, upper and lower solutions are used to guarantee their existence, and Schauders fixed point theorem is used to prove the uniqueness of the positive solutions to this problem. An illustrated example is presented to explain the theorems that have been proved.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 14 条
  • [1] Afshari H, 2023, TWMS J APPL ENG MATH, V13, P246
  • [2] Afshari H, 2022, J NONLINEAR CONVEX A, V23, P1213
  • [3] On Hadamard fractional integro-differential boundary value problems
    Ahmad B.
    Ntouyas S.K.
    [J]. Journal of Applied Mathematics and Computing, 2014, 47 (1-2) : 119 - 131
  • [4] Existence and Uniqueness Results for a Class of Fractional Differential Equations with an Integral Fractional Boundary Condition
    Ahmadkhanlu, Asghar
    [J]. FILOMAT, 2017, 31 (05) : 1241 - 1249
  • [5] Arzela C., 1895, Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat, V5, P55
  • [6] Ascoli G, 1884, Atti della R. Accad. Dei Lincei Memorie della Cl. Sci. Fis. Mat. Nat, V18, P521
  • [7] Kilbas A.A., 2002, Appl. Anal., V81, P435
  • [8] Kilbas A.A., 2006, THEORY APPL FRACTION
  • [9] Kilbas A. A., 2000, Demonstratio Mathematica, V33
  • [10] Kilbas AA., 2001, APPL ANAL, V78, P153, DOI [DOI 10.1080/00036810108840931, 10.1080/00036810108840931]