Hybrid Patterns and Solitonic Frequency Combs in Non-Hermitian Kerr Cavities

被引:0
作者
Ivars, Salim B. [1 ]
Milian, Carles [2 ]
Botey, Muriel [1 ]
Herrero, Ramon [1 ]
Staliunas, Kestutis [1 ,3 ,4 ]
机构
[1] Univ Politecn Catalunya UPC, Dept Fis, Rambla St Nebridi 22, Barcelona 08222, Catalonia, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
[3] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Co 23, E-08010 Barcelona, Spain
[4] Vilnius Univ, Fac Phys, Laser Res Ctr, Sauletekio Ave 10, Vilnius, Lithuania
关键词
MODULATION INSTABILITY; LOCALIZED STRUCTURES; SPATIAL SOLITONS; LASER;
D O I
10.1103/PhysRevLett.133.093802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We unveil a new scenario for the formation of dissipative localized structures in nonlinear systems. Commonly, the formation of such structures arises from the connection of a homogeneous steady state with either another homogeneous solution or a pattern. Both scenarios, typically found in cavities with normal and anomalous dispersion, respectively, exhibit unique fingerprints and particular features that characterize their behavior. However, we show that the introduction of a periodic non-Hermitian modulation in Kerr cavities hybridizes the two established soliton formation mechanisms, embodying the particular fingerprints of both. In the resulting novel scenario, the stationary states acquire a dual behavior, playing the role that was unambiguously attributed to either homogeneous states or patterns. These fundamental findings have profound practical implications for frequency comb generation, introducing unprecedented reversible mechanisms for real-time manipulation.
引用
收藏
页数:6
相关论文
共 72 条
[1]   Non-Hermitian Mode Cleaning in Periodically Modulated Multimode Fibers [J].
Akhter, Mohammad Nayeem ;
Ivars, Salim B. ;
Botey, Muriel ;
Herrero, Ramon ;
Staliunas, Kestutis .
PHYSICAL REVIEW LETTERS, 2023, 131 (04)
[2]   Unified framework for localized patterns in reaction-diffusion systems; the Gray-Scott and Gierer-Meinhardt cases [J].
Al Saadi, Fahad ;
Champneys, Alan .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2213)
[3]   Coexistence of Multiple Nonlinear States in a Tristable Passive Kerr Resonator [J].
Anderson, Miles ;
Wang, Yadong ;
Leo, Francois ;
Coen, Stephane ;
Erkintalo, Miro ;
Murdoch, Stuart G. .
PHYSICAL REVIEW X, 2017, 7 (03)
[4]   Pattern formation and competition in nonlinear optics [J].
Arecchi, FT ;
Boccaletti, S ;
Ramazza, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 318 (1-2) :1-83
[5]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[6]   To Snake or Not to Snake in the Planar Swift-Hohenberg Equation [J].
Avitabile, Daniele ;
Lloyd, David J. B. ;
Burke, John ;
Knobloch, Edgar ;
Sandstede, Bjoern .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03) :704-733
[7]   Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation [J].
Bao, Hualong ;
Olivieri, Luana ;
Rowley, Maxwell ;
Chu, Sai T. ;
Little, Brent E. ;
Morandotti, Roberto ;
Moss, David J. ;
Gongora, Juan Sebastian Totero ;
Peccianti, Marco ;
Pasquazi, Alessia .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[8]   Jamming anomaly in PT-symmetric systems [J].
Barashenkov, I. V. ;
Zezyulin, D. A. ;
Konotop, V. V. .
NEW JOURNAL OF PHYSICS, 2016, 18
[9]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[10]   Spatial soliton pixels in semiconductor devices [J].
Brambilla, M ;
Lugiato, LA ;
Prati, F ;
Spinelli, L ;
Firth, WJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2042-2045