Symplectic monodromy at radius zero and equimultiplicity of μ-constant families

被引:0
作者
De Bobadilla, Javier Fernandez [1 ,2 ]
Pelka, Tomasz [2 ,3 ]
机构
[1] Basque Fdn Sci, IKERBASQUE, Bilbao, Basque Country, Spain
[2] Basque Fdn Sci, Basque Ctr Appl Math, Bilbao, Spain
[3] Univ Warsaw, Inst Math, Warsaw, Poland
关键词
Zariski problem; equimultiplicity; monodromy; Floer homology; FLOER HOMOLOGY; MILNOR NUMBER; HYPERSURFACE SINGULARITIES; TOPOLOGICAL TYPES; ZETA-FUNCTION; MULTIPLICITY; DEFORMATIONS;
D O I
10.4007/annals.2024.200.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every family of isolated hypersurface singularities with constant Milnor number has constant multiplicity. To achieve this, we endow the A'Campo model of "radius zero" monodromy with a symplectic structure. This new approach allows us to generalize a spectral sequence of McLean converging to fixed point Floer homology of iterates of the monodromy to a more general setting that is well suited to study mu -constant families.
引用
收藏
页码:153 / 299
页数:147
相关论文
共 81 条
  • [1] On deformation with constant Milnor number and Newton polyhedron
    Abderrahmane, Ould M.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) : 167 - 174
  • [2] ZETA FUNCTION OF A MONODROMY
    ACAMPO, N
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1975, 50 (02) : 233 - 248
  • [3] Amini O, 2021, Arxiv, DOI arXiv:2007.07130
  • [4] [Anonymous], 1994, J. Algebraic Geom.
  • [5] [Anonymous], 1974, Topology, DOI DOI 10.1016/0040-9383(74)90037-8
  • [6] [Anonymous], 1999, Kodai Math. J., DOI DOI 10.2996/KMJ/1138044041
  • [7] [Anonymous], 2007, New Zealand Journal of Mathematics
  • [8] Audin M, 2014, UNIVERSITEXT, P1, DOI 10.1007/978-1-4471-5496-9
  • [9] The Denef-Loeser zeta function is not a topological invariant
    Bartolo, EA
    Cassou-Noguès, P
    Luengo, I
    Hernández, AM
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 : 45 - 54
  • [10] LOGARITHMIC LIMIT-SET OF AN ALGEBRAIC VARIETY
    BERGMAN, GM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 157 (JUN) : 459 - &