CENTRALIZER CLASSIFICATION AND RIGIDITY FOR SOME PARTIALLY HYPERBOLIC TORAL AUTOMORPHISMS

被引:0
作者
Sandfeldt, Sven [1 ]
机构
[1] Kungliga Tek hogskolan, Dept Math, Lindstedtsvagen 25, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Centralizer; rigidity; higher-rank actions; toral automorphism; partially hyperbolic; ANOSOV DIFFEOMORPHISMS; REVERSING SYMMETRIES; GLOBAL RIGIDITY;
D O I
10.3934/jmd.2024013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider local centralizer classification and rigidity of some toral automorphisms. In low dimensions we classify up to finite index possible centralizers for volume preserving diffeomorphisms f C-1-close to an ergodic irreducible toral automorphism L. Moreover, we show a rigidity result in the case that the centralizer of f is large: If the smooth centralizer Z(infinity)(f) is virtually isomorphic to that of L then f is C-infinity-conjugate to L. In higher dimensions we show a similar rigidity result for certain irreducible toral automorphisms. We also classify up to finite index all possible centralizers for symplectic diffeomorphisms C-5-close to a class of irreducible symplectic automorphisms on tori of any dimension
引用
收藏
页码:479 / 523
页数:45
相关论文
共 33 条
[1]   HOMEOMORPHIC CONJUGACY OF AUTOMORPHISMS ON TORUS [J].
ADLER, RL ;
PALAIS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (06) :1222-&
[2]   Extremal Lyapunov exponents: an invariance principle and applications [J].
Avila, Artur ;
Viana, Marcelo .
INVENTIONES MATHEMATICAE, 2010, 181 (01) :115-178
[3]   Symmetries and reversing symmetries of toral automorphisms [J].
Baake, M ;
Roberts, JAG .
NONLINEARITY, 2001, 14 (04) :R1-R24
[4]   ORBIT STRUCTURE AND (REVERSING) SYMMETRIES OF TORAL ENDOMORPHISMS ON RATIONAL LATTICES [J].
Baake, Michael ;
Neumaerker, Natascha ;
Roberts, John A. G. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (02) :527-553
[5]   CENTRALIZERS OF PARTIALLY HYPERBOLIC DIFFEOMORPHISMS IN DIMENSION 3 [J].
Barthelme, Thomas ;
Gogolev, Andrey .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) :4477-4484
[6]   THE C1 GENERIC DIFFEOMORPHISM HAS TRIVIAL CENTRALIZER [J].
Bonatti, Christian ;
Crovisier, Sylvain ;
Wilkinson, Amie .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 109, 2009, (109) :185-244
[7]   On dynamical coherence [J].
Brin, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :395-401
[8]   PATHOLOGY AND ASYMMETRY: CENTRALIZER RIGIDITY FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS [J].
Damjanovic, Danijela ;
Wilkinson, Amie ;
Xu, Disheng .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (17) :3815-3890
[9]  
Fisher D, 2013, J AM MATH SOC, V26, P167
[10]   ANOSOV DIFFEOMORPHISMS ON TORI [J].
FRANKS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :117-&