Real-time monitoring of internal temperature of a lithium-ion battery using embedded fiber Bragg gratings

被引:1
作者
Huang, Feixia [1 ]
Gu, Bowen [2 ]
Wu, Qiang [1 ,3 ]
Yang, Hong [1 ]
Hu, Yingying [1 ]
Liu, Juan
Fu, Yue [1 ]
He, Xing-Dao [1 ]
Wu, Haimeng [3 ]
Jiang, Jing [3 ]
Putrus, Ghanim [3 ]
Ghassemlooy, Zabih [3 ]
Yuan, Jinhui [4 ]
Liu, Bin [1 ]
机构
[1] Nanchang Hangkong Univ, Key Lab Nondestruct Test, Minist Educ, Nanchang 330063, Peoples R China
[2] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, England
[3] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
[4] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
fiber Bragg grating; temperature monitoring; lithium-ion battery; THERMAL RUNAWAY; OPTICAL-FIBER; CELL STATE; SENSORS; ELECTRODE;
D O I
10.3788/COL202422.091202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study proposes a method for real-time monitoring of lithium-ion battery (LiB) internal temperatures through the temperature response of an embedded fiber Bragg grating (FBG) sensor. This approach overcomes the limitations of most methods that can only detect the external temperature at limited places by providing the advantages of sensing both the internal temperature and external temperature at multiple points simultaneously for precise condition monitoring. In addition, a numerical LiB cell model was developed to investigate the heat generation and temperature gradient using the finite element analysis method. The outcomes show that this model can be used to predict the temperature with less than 5% discrepancy (1.5 degrees C) compared with experimental results. Thereby, this proposed method can be effectively used to monitor the safety and state of health of LiBs and other types of rechargeable batteries in real-time.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Ahmadou Samba A., 2013, World Electr. Veh. J., V6, P629
  • [2] Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications
    Astaneh, Majid
    Andric, Jelena
    Lofdahl, Lennart
    Stopp, Peter
    [J]. ENERGY, 2022, 239
  • [3] Monitoring the Strain Evolution of Lithium-Ion Battery Electrodes using an Optical Fiber Bragg Grating Sensor
    Bae, Chang-Jun
    Manandhar, Ashish
    Kiesel, Peter
    Raghavan, Ajay
    [J]. ENERGY TECHNOLOGY, 2016, 4 (07) : 851 - 855
  • [4] Benger Ralf., 2009, World Electric Vehicle Journal, V3, P342, DOI DOI 10.3390/WEVJ3020342
  • [5] bjtongwei, About us
  • [6] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    [J]. JOULE, 2020, 4 (04) : 743 - 770
  • [7] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    [J]. APPLIED ENERGY, 2019, 246 : 53 - 64
  • [8] Thermal runaway mechanism of lithium ion battery for electric vehicles: A review
    Feng, Xuning
    Ouyang, Minggao
    Liu, Xiang
    Lu, Languang
    Xia, Yong
    He, Xiangming
    [J]. ENERGY STORAGE MATERIALS, 2018, 10 : 246 - 267
  • [9] Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors
    Fleming, Joe
    Amietszajew, Tazdin
    McTurk, Euan
    Towers, David P.
    Greenwood, Dave
    Bhagat, Rohit
    [J]. HARDWAREX, 2018, 3 : 100 - 109
  • [10] Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery
    Forgez, Christophe
    Do, Dinh Vinh
    Friedrich, Guy
    Morcrette, Mathieu
    Delacourt, Charles
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2961 - 2968