Person explanatory multidimensional item response theory with the instrument package in R

被引:0
作者
Kleinsasser, Michael J. [1 ]
Mistry, Ritesh [2 ]
Hsieh, Hsing-Fang [2 ]
Mccarthy, William J. [3 ]
Raghunathan, Trivellore [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Hlth Behav & Hlth Educ, Ann Arbor, MI 48109 USA
[3] Univ Calif Los Angeles, Dept Hlth Policy & Management, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
Item response theory; Bayesian data analysis; Multidimensional item response theory; Latent regression; R package; Hamiltonian Monte Carlo; CHAIN MONTE-CARLO; MODELS; ERROR;
D O I
10.3758/s13428-024-02490-5
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
We present the new R package instrument to perform Bayesian estimation of person explanatory multidimensional item response theory. The package implements an exploratory multidimensional item response theory model and a higher-order multidimensional item response theory model, a type of confirmatory multidimensional item response theory. Explanation of person parameters is accomplished by fixed and random effect linear regression models. Estimation is carried out using Hamiltonian Monte Carlo in Stan. In this article, we provide a detailed description of the models; we use the instrument package to demonstrate fitting explanatory item response models with fixed and random effects (i.e., mixed modeling) of person parameters in R; and, we perform a simulation study to evaluate the performance of our implementation of the models.
引用
收藏
页码:8540 / 8551
页数:12
相关论文
共 34 条
  • [1] Using SAS PROC MCMC for Item Response Theory Models
    Ames, Allison J.
    Samonte, Kelli
    [J]. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2015, 75 (04) : 585 - 609
  • [2] [Anonymous], 2010, Journal of Statistical Software, DOI [10.18637/jss.v036.c01, DOI 10.18637/JSS.V036.C01]
  • [3] brms: An R Package for Bayesian Multilevel Models Using Stan
    Buerkner, Paul-Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01): : 1 - 28
  • [4] Bulut O., 2021, Psych, V3, P308, DOI [https://doi.org/10.3390/psych3030023, DOI https://doi.org/10.3390/psych3030023, 10.3390/psych3030023, DOI 10.3390/PSYCH3030023]
  • [5] Butler-Barnes ST., 2014, URBAN ILLS 21 CENTUR, P133
  • [6] Item Response Theory
    Cai, Li
    Choi, Kilchan
    Hansen, Mark
    Harrell, Lauren
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 3, 2016, 3 : 297 - 321
  • [7] Generalized Full-Information Item Bifactor Analysis
    Cai, Li
    Yang, Ji Seung
    Hansen, Mark
    [J]. PSYCHOLOGICAL METHODS, 2011, 16 (03) : 221 - 248
  • [8] Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis
    Cai, Li
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2010, 35 (03) : 307 - 335
  • [9] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [10] Extended Mixed-Effects Item Response Models With the MH-RM Algorithm
    Chalmers, R. Philip
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2015, 52 (02) : 200 - 222