Metal stable isotopes fractionation during adsorption

被引:3
作者
Li, Zijing [1 ]
Huang, Yi [1 ,2 ]
Jiang, Lan [1 ]
Tang, Hua [2 ]
Jiao, Ganghui [1 ]
Gou, Hang [1 ]
Gou, Wenxian [2 ]
Ni, Shijun [1 ]
机构
[1] Chengdu Univ Technol, Coll Geosci, Chengdu 610059, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Ecol & Environm, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal stable isotopes; Isotope fractionation; Adsorption; Molybdenum; Iron; Zinc; MC-ICP-MS; DISSIMILATORY FE(III) REDUCTION; IONIZATION MASS-SPECTROMETRY; AQUEOUS FERROUS IRON; ZINC ISOTOPES; ATOM EXCHANGE; SURFACE COMPLEXATION; RATIO MEASUREMENTS; FE(II)-FE(III) ELECTRON; PRECISE DETERMINATION;
D O I
10.1016/j.ecoenv.2024.116770
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Isotope technology is an ideal tool for tracing the sources of certain pollutants or providing insights into environmental processes. In recent years, the advent of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has enabled the precise measurement of various metal stable isotopes. Due to the presence of "fingerprint" properties in various environmental samples, metal stable isotopes have been applied to distinguish the source of contaminants effectively and further understand the corresponding environmental processes. The environmental fate of metal elements is strongly controlled by adsorption, an essential process for the distribution of elements between the dissolved and particulate phases. The adsorption of metal elements on mineral and organic surfaces significantly affects their biogeochemical cycles in the environment. Therefore, it is crucial to elucidate the fractionation characteristics of stable metal isotopes during the adsorption process. In this review, three typical transitional metal elements were selected, considering Mo as the representative of anionic species and Fe and Zn as the representative of cationic species. For Mo, the heavier Mo isotope is preferentially adsorbed in the solution phase, pH has a more significant influence on isotope fractionation, and temperature and ionic strength are relatively insensitive. Differences in coordination environments between dissolved and adsorbed Mo during adsorption, i.e., attachment mode (inner- or outer-sphere) or molecular symmetry (e.g., coordination number and magnitude of distortion), are likely responsible for isotopic fractionation. For Fe, The study of equilibrium/kinetic Fe isotopic fractionation in aqueous Fe(II)-mineral is not simple. The interaction between aqueous Fe(II) and Fe (hydroxyl) oxides is complex and dynamic. The isotope effect is due to coupled electron and atom exchange between adsorbed Fe(II), aqueous Fe(II), and reactive Fe(III) on the surface of Fe (hydroxyl) oxide. For Zn, the heavier Fe isotope preferentially adsorbs on the solid phase, and pH and ionic strength are essential influencing factors. The difference in coordination environment may be the cause of isotope fractionation.
引用
收藏
页数:15
相关论文
共 210 条
[1]   The stable isotope geochemistry of copper and zinc [J].
Albarède, F .
GEOCHEMISTRY OF NON-TRADITIONAL STABLE ISOTOPES, 2004, 55 :409-427
[2]   Theoretical investigation of iron isotope fractionation between Fe(H2O)3+6 and Fe(H2O)2+6 :: Implications for iron stable isotope geochemistry [J].
Anbar, AD ;
Jarzecki, AA ;
Spiro, TG .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (04) :825-837
[3]   Iron stable isotopes: beyond biosignatures [J].
Anbar, AD .
EARTH AND PLANETARY SCIENCE LETTERS, 2004, 217 (3-4) :223-236
[4]   Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS [J].
Anbar, AD ;
Knab, KA ;
Barling, J .
ANALYTICAL CHEMISTRY, 2001, 73 (07) :1425-1431
[5]   A whiff of oxygen before the Great Oxidation Event? [J].
Anbar, Ariel D. ;
Duan, Yun ;
Lyons, Timothy W. ;
Arnold, Gail L. ;
Kendall, Brian ;
Creaser, Robert A. ;
Kaufman, Alan J. ;
Gordon, Gwyneth W. ;
Scott, Clinton ;
Garvin, Jessica ;
Buick, Roger .
SCIENCE, 2007, 317 (5846) :1903-1906
[6]   Metal stable isotopes in paleoceanography [J].
Anbar, Ariel D. ;
Rouxel, Olivier .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2007, 35 (717-746) :717-746
[7]   Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes [J].
Archer, C ;
Vance, D .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2004, 19 (05) :656-665
[8]   Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans [J].
Arnold, GL ;
Anbar, AD ;
Barling, J ;
Lyons, TW .
SCIENCE, 2004, 304 (5667) :87-90
[9]   Measurement of zinc stable isotope ratios in biogeochemical matrices by double-spike MC-ICPMS and determination of the isotope ratio pool available for plants from soil [J].
Arnold, Tim ;
Schoenbaechler, Maria ;
Rehkaemper, Mark ;
Dong, Schuofei ;
Zhao, Fang-Jie ;
Kirk, Guy J. D. ;
Coles, Barry J. ;
Weiss, Dominik J. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (7-8) :3115-3125
[10]   Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation [J].
Balci, N ;
Bullen, TD ;
Witte-Lien, K ;
Shanks, WC ;
Motelica, M ;
Mandernack, KW .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (03) :622-639