Enhanced EDAS methodology for multiple-criteria group decision analysis utilizing linguistic q-rung orthopair fuzzy hamacher aggregation operators

被引:6
作者
Ali, Jawad [1 ]
Ali, Waqas [1 ]
Alqahtani, Haifa [2 ]
Syam, Muhammad I. [3 ]
机构
[1] Kohat Univ Sci & Technol, Inst Numer Sci, Kohat 26000, KPK, Pakistan
[2] United Arab Emirates Univ, Dept Stat & Business Analyt, Al Ain, U Arab Emirates
[3] United Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, U Arab Emirates
关键词
Hamacher t-norms; Linguistic q-rung orthopair fuzzy set; Entropy; EDAS method; NUMBERS; SETS; ENTROPY;
D O I
10.1007/s40747-024-01586-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The linguistic q-rung orthopair fuzzy (LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document}) set serves as a useful way of presenting uncertain information by offering more space for decision experts. In the present research, we first link the concepts of Hamacher t-norm and t-conorm with the frame of LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} numbers to develop and analyze the innovative LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} Hamacher operations. Then, following the proposed Hamacher's norm operations, a series of aggregation operators including LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} weighted averaging, LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} ordered weighted averaging, LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} hybrid averaging, LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} weighted geometric, LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} ordered weighted geometric, LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} hybrid geometric operators are investigated. Some interesting aspects of these AOs are also presented. We further develop evaluation based on distance from average solution (EDAS) approach in light of the newly outlined concepts to cope with LqROF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{q}ROF$$\end{document} decision-making problems where the weight information of criteria is fully unknown, ultimately, the practicality of the framed approach is demonstrated through an empirical case, and a detailed analysis is carried out to showcase the methodology dominance.
引用
收藏
页码:8403 / 8432
页数:30
相关论文
共 65 条
[1]   Group decision-making framework under linguistic q-rung orthopair fuzzy Einstein models [J].
Akram, Muhammad ;
Naz, Sumera ;
Edalatpanah, S. A. ;
Mehreen, Rida .
SOFT COMPUTING, 2021, 25 (15) :10309-10334
[2]  
Al Omari Salah, 2018, 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), P102, DOI 10.1109/ICREGA.2018.8337642
[3]   Multi-criteria group decision-making based on the combination of dual hesitant fuzzy sets with soft expert sets for the prediction of a local election scenario [J].
Ali, Ghous ;
Afzal, Ayesha ;
Sheikh, Umber ;
Nabeel, Muhammad .
GRANULAR COMPUTING, 2023, 8 (06) :2039-2066
[4]   Attribute reduction approaches under interval-valued q-rung orthopair fuzzy soft framework [J].
Ali, Ghous ;
Afzal, Muhammad ;
Asif, Muhammad ;
Shazad, Adeel .
APPLIED INTELLIGENCE, 2022, 52 (08) :8975-9000
[6]   A cubic q-rung orthopair fuzzy TODIM method based on Minkowski-type distance measures and entropy weight [J].
Ali, Jawad ;
Bashir, Zia ;
Rashid, Tabasam .
SOFT COMPUTING, 2023, 27 (20) :15199-15223
[7]   r, s, t-Spherical Fuzzy VIKOR Method and Its Application in Multiple Criteria Group Decision Making [J].
Ali, Jawad ;
Naeem, Muhammad .
IEEE ACCESS, 2023, 11 :46454-46475
[9]   INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, KT .
FUZZY SETS AND SYSTEMS, 1986, 20 (01) :87-96
[10]   Circular intuitionistic fuzzy sets [J].
Atanassov, Krassimir T. .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) :5981-5986