Improved estimates for the sharp interface limit of the stochastic Cahn-Hilliard equation with space-time white noise

被引:0
作者
Banas, L'ubomir [1 ]
Mukam, Jean Daniel [1 ]
机构
[1] Bielefeld Univ, Dept Math, Universitatsstr 25, D-33615 Bielefeld, Germany
关键词
stochastic Cahn-Hilliard equation; space-time white noise; Mullins-Sekerka/Hele-Shaw problem; sharp interface limit;
D O I
10.4171/IFB/518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the sharp interface limit of the stochastic Cahn-Hilliard equation with cubic double-well potential and additive space-time white noise epsilon sigma W(sic), where epsilon > 0 is an interfacial width parameter. We prove that, for a sufficiently large scaling constant sigma > 0, the stochastic Cahn-Hilliard equation converges to the deterministic Mullins-Sekerka/Hele-Shaw problem for epsilon -> 0. The convergence is shown in suitable fractional Sobolev norms as well as in the L-p-norm for p is an element of (2, 4] in spatial dimension d = 2, 3. This generalizes the existing result for the space-time white noise to dimension d = 3 and improves the existing results for smooth noise, which were so far limited to p is an element of (2, 2d +8 /d+2] in spatial dimension d = 2, 3. As a byproduct of the analysis of the stochastic problem with space-time white noise, we identify minimal regularity requirements on the noise which allow convergence to the sharp interface limit in the H1-norm and also provide improved convergence estimates for the sharp interface limit of the deterministic problem.
引用
收藏
页码:563 / 586
页数:24
相关论文
共 13 条
  • [1] CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL
    ALIKAKOS, ND
    BATES, PW
    CHEN, XF
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) : 165 - 205
  • [2] The sharp interface limit for the stochastic Cahn-Hilliard equation
    Antonopoulou, D. C.
    Bloemker, D.
    Karali, G. D.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 280 - 298
  • [3] Numerical approximation of the stochastic Cahn-Hilliard equation near the sharp interface limit
    Antonopoulou, Dimitra
    Banas, Lubomir
    Nurnberg, Robert
    Prohl, Andreas
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (03) : 505 - 551
  • [4] Higher moments for the stochastic Cahn-Hilliard equation with multiplicative Fourier noise
    Antonopoulou, Dimitra C.
    [J]. NONLINEARITY, 2023, 36 (02) : 1053 - 1081
  • [5] ROBUST A POSTERIORI ESTIMATES FOR THE STOCHASTIC CAHN-HILLIARD EQUATION
    Banas, L'ubomir
    Vieth, Christian
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2025 - 2063
  • [6] Sharp Interface Limit of Stochastic Cahn-Hilliard Equation with Singular Noise
    Banas, Lubomir
    Yang, Huanyu
    Zhu, Rongchan
    [J]. POTENTIAL ANALYSIS, 2023, 59 (02) : 497 - 518
  • [7] ON SPINODAL DECOMPOSITION
    CAHN, JW
    [J]. ACTA METALLURGICA, 1961, 9 (09): : 795 - 801
  • [8] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [9] Da Prato G., 2014, Encyclopedia of Mathematics and Its Applications, Vsecond, DOI [10.1017/CBO9781107295513, DOI 10.1017/CBO9781107295513]
  • [10] Stochastic Cahn-Hilliard equation
    DaPrato, G
    Debussche, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) : 241 - 263