Predictive modeling for multifaceted hydrothermal carbonization of biomass

被引:1
|
作者
Katongtung, Tossapon [1 ,5 ]
Prasertpong, Prapaporn [2 ]
Sukpancharoen, Somboon [3 ]
Sinthupinyo, Sakprayut [4 ]
Tippayawong, Nakorn [5 ]
机构
[1] Chiang Mai Univ, Fac Engn, Energy Engn, Chiang Mai 50200, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Fac Engn, Dept Mech Engn, Thanyaburi 12110, Pathum Thani, Thailand
[3] Khon Kaen Univ, Fac Engn, Dept Agr Engn, Khon Kaen 40002, Thailand
[4] Siam Res & Innovat Co Ltd, Bangkok, Thailand
[5] Chiang Mai Univ, Fac Engn, Dept Mech Engn, Chiang Mai, Thailand
来源
关键词
Biomass conversion; Clean energy; Hydrochar; Machine learning; WASTE BIOMASS; HYDROCHAR; TEMPERATURE; LIGNIN; TIME; HTC;
D O I
10.1016/j.jece.2024.114071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrothermal carbonization is a widely recognized process for converting biomass into biomass charcoal, aimed at reducing and replacing the use of natural resources while also mitigating CO2 emissions responsible for global warming. However, the complexity of the hydrothermal carbonization process presents challenges in elucidating the interplay of different features. Thus, this study employs extreme gradient boosting machine learning algorithm to predict the values of six target outputs namely; yield, calorific value, ash, carbon, hydrogen, and oxygen content of hydrochar. Notably, the study leverages a rich dataset comprising over 1000 data points and 16 input features. The results indicate high correlations, with R-2 ranging from 0.84 to 0.97. Furthermore, the study investigates the impact of input features on all six outputs through the application of Shapley values and SHAP dependence plot techniques, highlighting its novelty and contribution to the field.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Biomass Hydrothermal Carbonization: Markov-Chain Monte Carlo Data Analysis and Modeling
    Gallifuoco, Alberto
    Papa, Alessandro Antonio
    Taglieri, Luca
    FRONTIERS IN CHEMICAL ENGINEERING, 2021, 3
  • [22] Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis
    Lucian, Michela
    Fiori, Luca
    ENERGIES, 2017, 10 (02):
  • [23] Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion
    Marin-Batista, J. D.
    Villamil, J. A.
    Rodriguez, J. J.
    Mohedano, A. F.
    de la Rubia, M. A.
    BIORESOURCE TECHNOLOGY, 2019, 274 : 395 - 402
  • [24] Dry torrefaction and hydrothermal carbonization of biomass to fuel pellets
    Seraj, Somaye
    Azargohar, Ramin
    Dalai, Ajay K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 210
  • [25] Impact of hydrothermal carbonization on combustion properties of residual biomass
    Lynn J. Hansen
    Sebastian Fendt
    Hartmut Spliethoff
    Biomass Conversion and Biorefinery, 2022, 12 : 2541 - 2552
  • [26] Effects of Bioliquid Recirculation on Hydrothermal Carbonization of Lignocellulosic Biomass
    Lee, Sun-Ju
    Oh, Min-Ah
    Oh, Seung-Jin
    Cho, Na-Hyeon
    Kang, Young-Yeul
    Lee, Jai-Young
    ENERGIES, 2022, 15 (13)
  • [27] An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass
    Sabzoi Nizamuddin
    Humair Ahmed Baloch
    M. T. H. Siddiqui
    N. M. Mubarak
    M. M. Tunio
    A. W. Bhutto
    Abdul Sattar Jatoi
    G. J. Griffin
    M. P. Srinivasan
    Reviews in Environmental Science and Bio/Technology, 2018, 17 : 813 - 837
  • [28] Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass
    Volpe, Maurizio
    Messineo, Antonio
    Makela, Mikko
    Barr, Meredith R.
    Volpe, Roberto
    Corrado, Chiara
    Fiori, Luca
    FUEL PROCESSING TECHNOLOGY, 2020, 206
  • [29] Impact of hydrothermal carbonization on combustion properties of residual biomass
    Hansen, Lynn J.
    Fendt, Sebastian
    Spliethoff, Hartmut
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (07) : 2541 - 2552
  • [30] Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass
    Lynam, Joan G.
    Reza, M. Toufiq
    Vasquez, Victor R.
    Coronella, Charles J.
    FUEL, 2012, 99 : 271 - 273