Predictive modeling for multifaceted hydrothermal carbonization of biomass

被引:1
|
作者
Katongtung, Tossapon [1 ,5 ]
Prasertpong, Prapaporn [2 ]
Sukpancharoen, Somboon [3 ]
Sinthupinyo, Sakprayut [4 ]
Tippayawong, Nakorn [5 ]
机构
[1] Chiang Mai Univ, Fac Engn, Energy Engn, Chiang Mai 50200, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Fac Engn, Dept Mech Engn, Thanyaburi 12110, Pathum Thani, Thailand
[3] Khon Kaen Univ, Fac Engn, Dept Agr Engn, Khon Kaen 40002, Thailand
[4] Siam Res & Innovat Co Ltd, Bangkok, Thailand
[5] Chiang Mai Univ, Fac Engn, Dept Mech Engn, Chiang Mai, Thailand
来源
关键词
Biomass conversion; Clean energy; Hydrochar; Machine learning; WASTE BIOMASS; HYDROCHAR; TEMPERATURE; LIGNIN; TIME; HTC;
D O I
10.1016/j.jece.2024.114071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrothermal carbonization is a widely recognized process for converting biomass into biomass charcoal, aimed at reducing and replacing the use of natural resources while also mitigating CO2 emissions responsible for global warming. However, the complexity of the hydrothermal carbonization process presents challenges in elucidating the interplay of different features. Thus, this study employs extreme gradient boosting machine learning algorithm to predict the values of six target outputs namely; yield, calorific value, ash, carbon, hydrogen, and oxygen content of hydrochar. Notably, the study leverages a rich dataset comprising over 1000 data points and 16 input features. The results indicate high correlations, with R-2 ranging from 0.84 to 0.97. Furthermore, the study investigates the impact of input features on all six outputs through the application of Shapley values and SHAP dependence plot techniques, highlighting its novelty and contribution to the field.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A New Approach to Kinetic Modeling of Biomass Hydrothermal Carbonization
    Gallifuoco, Alberto
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (15) : 13073 - 13080
  • [2] Modeling and simulation of a continuous biomass hydrothermal carbonization process
    Gomez, Jaime
    Corsi, Giancarlo
    Pino-Cortes, Ernesto
    Diaz-Robles, Luis A.
    Campos, Valeria
    Cubillos, Francisco
    Pelz, Stefan K.
    Paczkowski, Sebastian
    Carrasco, Samuel
    Silva, Javier
    Lapuerta, Magin
    Pazo, Amparo
    Monedero, Esperanza
    CHEMICAL ENGINEERING COMMUNICATIONS, 2020, 207 (06) : 751 - 768
  • [3] Modeling biomass hydrothermal carbonization by the maximum information entropy criterion
    Gallifuoco, Alberto
    Papa, Alessandro Antonio
    Taglieri, Luca
    REACTION CHEMISTRY & ENGINEERING, 2021, 6 (05): : 920 - 928
  • [4] MODELING THE REACTION KINETICS DURING HYDROTHERMAL CARBONIZATION OF WASTE BIOMASS
    Basso, D.
    Patuzzi, F.
    Castello, D.
    Baratieri, M.
    Fiori, L.
    PAPERS OF THE 22ND EUROPEAN BIOMASS CONFERENCE: SETTING THE COURSE FOR A BIOBASED ECONOMY, 2014, : 1269 - 1273
  • [5] Hydrothermal Carbonization of Biomass: A Review
    A. Yu. Krylova
    V. M. Zaitchenko
    Solid Fuel Chemistry, 2018, 52 : 91 - 103
  • [6] Hydrothermal carbonization of biomass: a commentary
    Supee, Aiman Hakin
    Zaini, Muhammad Abbas Ahmad
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2024, 32 (02) : 119 - 127
  • [7] Hydrothermal carbonization of lignocellulosic biomass
    Xiao, Ling-Ping
    Shi, Zheng-Jun
    Xu, Feng
    Sun, Run-Cang
    BIORESOURCE TECHNOLOGY, 2012, 118 : 619 - 623
  • [8] Hydrothermal Carbonization of Biomass: A Review
    Krylova, A. Yu.
    Zaitchenko, V. M.
    SOLID FUEL CHEMISTRY, 2018, 52 (02) : 91 - 103
  • [9] Hydrothermal carbonization of biomass and waste: A review
    Gonzalez-Arias, Judith
    Sanchez, Marta E.
    Cara-Jimenez, Jorge
    Baena-Moreno, Francisco M.
    Zhang, Zhien
    ENVIRONMENTAL CHEMISTRY LETTERS, 2022, 20 (01) : 211 - 221
  • [10] Hydrothermal carbonization of biomass and waste: A review
    Judith González-Arias
    Marta E. Sánchez
    Jorge Cara-Jiménez
    Francisco M. Baena-Moreno
    Zhien Zhang
    Environmental Chemistry Letters, 2022, 20 : 211 - 221