Self-attention Mechanism Network Integrating Spatio-Temporal Feature Extraction for Remaining Useful Life Prediction

被引:2
|
作者
Zhang, Yiwei [2 ]
Liu, Kexin [3 ]
Zhang, Jiusi [1 ]
Huang, Lei [2 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin, Peoples R China
[2] Hubei Polytech Univ, Dept Elect & Elect Informat Engn, Hubei 435003, Peoples R China
[3] Harbin Engn Univ, Sch Econ & Management, Harbin, Peoples R China
关键词
Prognostics and health management; Remaining useful life; Spatio-temporal feature extraction; Self-attention mechanism; One-dimensional convolutional neural network; Bidirectional long-short term memory network; NEURAL-NETWORK; ENSEMBLE;
D O I
10.1007/s42835-024-02036-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Prognostics and health management technology for industrial equipment heavily relies on the accurate prediction of the remaining useful life (RUL). As commonly used RUL prediction approaches, the conventional convolutional neural network, and long-short term memory network are not only difficult to realize the extraction process of spatio-temporal features, but also cannot reflect the difference between the data at different moments in the RUL prediction results. Aimed to deal with these problems, a self-attention mechanism network integrating spatio-temporal feature extraction (SAMN-STFE) is proposed to predict RUL, which can deliver higher weight to the significant moments. In detail, feature selection and noise reduction are performed on the data picked up by the multiple sensors during the working process. The self-attention mechanism network assigns corresponding weights to different time points in the time window. Afterward, the spatial features are extracted by one-dimensional convolutional neural network. The temporal features are extracted by bidirectional long short-term memory networks. Ultimately, the trained SAMN-STFE can be utilized for online RUL prediction. To validate the proposed approach for predicting RUL, the dataset of aircraft turbofan engines, furnished by NASA Ames Prediction Center is employed. Experimental results represent that the proposed approach has excellent RUL prediction performance.
引用
收藏
页码:1127 / 1142
页数:16
相关论文
共 50 条
  • [1] Remaining useful life prediction for multi-sensor mechanical equipment based on self-attention mechanism network incorporating spatio-temporal convolution
    Yang, Xu
    Tang, Lin
    Huang, Jian
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2025, 239 (02) : 315 - 329
  • [2] Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life Prediction
    Huang, Zhixin
    He, Yujiang
    Sick, Bernhard
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 99 - 105
  • [3] A novel spatio-temporal characteristic extraction network for bearing remaining useful life prediction
    Jiang, Li
    Cao, Biaobiao
    Zhang, Xin
    Chen, Bingyang
    Wang, Lei
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [4] A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings
    Cao, Yudong
    Ding, Yifei
    Jia, Minping
    Tian, Rushuai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 215
  • [5] A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
    Peng, Cheng
    Wu, Jiaqi
    Tang, Zhaohui
    Yuan, Xinpan
    Li, Changyun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [6] Spatio-Temporal Self-Attention Network for Video Saliency Prediction
    Wang, Ziqiang
    Liu, Zhi
    Li, Gongyang
    Wang, Yang
    Zhang, Tianhong
    Xu, Lihua
    Wang, Jijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1161 - 1174
  • [7] Temporal convolutional network with soft threshold and contractile self-attention mechanism for remaining useful life prediction of rolling bearings
    Ma, Hao
    Wang, Jinrui
    Han, Baokun
    Zhang, Zongzhen
    Bao, Huaiqian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [8] A novel spatio-temporal hybrid neural network for remaining useful life prediction
    Wang, Tao
    Tang, Xianghong
    Lu, Jianguang
    Liu, Fangjie
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (17): : 19095 - 19117
  • [9] A novel spatio-temporal hybrid neural network for remaining useful life prediction
    Tao Wang
    Xianghong Tang
    Jianguang Lu
    Fangjie Liu
    The Journal of Supercomputing, 2023, 79 : 19095 - 19117
  • [10] Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism
    Zhang, Jiusi
    Jiang, Yuchen
    Wu, Shimeng
    Li, Xiang
    Luo, Hao
    Yin, Shen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 221