Dual modification of current collector for high-performance lithium metal batteries by laser etching

被引:1
作者
Zhang, Xin [1 ]
Huang, Lujun [1 ]
Yang, Guobo [1 ]
Song, Jinpeng [1 ]
Cong, Guanghui [1 ]
Liu, Shaoshuai [1 ]
Huang, Yating [1 ]
Liu, Zheyuan [1 ]
Geng, Lin [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Box 433, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal anode; Multilayer current collector; Laser treatment; Oxide layer; Dual modification; ELECTROLYTES; PERSPECTIVE; INTERPHASE;
D O I
10.1016/j.electacta.2024.144633
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Despite the lithium metal anode is regarded as the next generation of anode for its high energy density and low redox potential, the huge volume expansion and high reactivity between lithium and electrolyte still limit its application. Herein, a multilayer Cu current collector is designed to accommodate the volume expansion and suppress the high reactivity. Through laser etching, the structure and the chemical component of Cu foil are deeply changed. Planar Cu is etched to construct regular microstructure with different length in interval, which regulate the current density distribution and alleviate the massive volume expansion during the charging process. And the surface of microstructure reacts with air to form lithiophilic phase CuxO layer in situ resulting in stable surface of lithium metal anodes. The simple dual-modification strategy enables the half-cell to achieves a cycle life of over 240 cycles with the CE above 98%. In contrast, the initial Cu only achieve a cycle life of less than 50 cycles. Meanwhile, full battery based on multilayer current collector delivered outstanding cycle stability. This work shows an innovative sight for the modification of current collector and safe Li metal anode.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Electron-ion collider in China [J].
Anderle, Daniele P. ;
Bertone, Valerio ;
Cao, Xu ;
Chang, Lei ;
Chang, Ningbo ;
Chen, Gu ;
Chen, Xurong ;
Chen, Zhuojun ;
Cui, Zhufang ;
Dai, Lingyun ;
Deng, Weitian ;
Ding, Minghui ;
Feng, Xu ;
Gong, Chang ;
Gui, Longcheng ;
Guo, Feng-Kun ;
Han, Chengdong ;
He, Jun ;
Hou, Tie-Jiun ;
Huang, Hongxia ;
Huang, Yin ;
KumericKi, KresImir ;
Kaptari, L. P. ;
Li, Demin ;
Li, Hengne ;
Li, Minxiang ;
Li, Xueqian ;
Liang, Yutie ;
Liang, Zuotang ;
Liu, Chen ;
Liu, Chuan ;
Liu, Guoming ;
Liu, Jie ;
Liu, Liuming ;
Liu, Xiang ;
Liu, Tianbo ;
Luo, Xiaofeng ;
Lyu, Zhun ;
Ma, Boqiang ;
Ma, Fu ;
Ma, Jianping ;
Ma, Yugang ;
Mao, Lijun ;
Mezrag, Cedric ;
Moutarde, Herve ;
Ping, Jialun ;
Qin, Sixue ;
Ren, Hang ;
Roberts, Craig D. ;
Rojo, Juan .
FRONTIERS OF PHYSICS, 2021, 16 (06)
[2]   Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes [J].
Basile, Andrew ;
Hollenkamp, Anthony F. ;
Bhatt, Anand I. ;
O'Mullane, Anthony P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 :69-72
[3]   A successive "conversion-deposition" mechanism achieved by micro-crystalline Cu2O modified current collector for composite lithium anode [J].
Cai, Yifei ;
Qin, Bin ;
Li, Chun ;
Si, Xiaoqing ;
Cao, Jian ;
Zheng, Xiaohang ;
Qiao, Liang ;
Qi, Junlei .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 120 :285-292
[4]   Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer [J].
Cai, Yifei ;
Qin, Bin ;
Li, Chun ;
Si, Xiaoqing ;
Cao, Jian ;
Zheng, Xiaohang ;
Qi, Junlei .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[5]   Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode [J].
Chen, Xiang ;
Shen, Xin ;
Li, Bo ;
Peng, Hong-Jie ;
Cheng, Xin-Bing ;
Li, Bo-Quan ;
Zhang, Xue-Qiang ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (03) :734-737
[6]   A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries [J].
Chen, Xiao-Ru ;
Yao, Yu-Xing ;
Yan, Chong ;
Zhang, Rui ;
Cheng, Xin-Bing ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7743-7747
[7]   Electrochemical impedance spectroscopy of a Li-S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells [J].
Conder, Joanna ;
Villevieille, Claire ;
Trabesinger, Sigita ;
Novak, Petr ;
Gubler, Lorenz ;
Bouchet, Renaud .
ELECTROCHIMICA ACTA, 2017, 244 :61-68
[8]   Boosting Bi-Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward High-Rate and Long-Cycling Lithium-Sulfur Battery [J].
Dong, Chenxu ;
Zhou, Cheng ;
Wu, Mingwei ;
Yu, Yongkun ;
Yu, Kesong ;
Yan, Kaijian ;
Shen, Chunli ;
Gu, Jiapei ;
Yan, Mengyu ;
Sun, Congli ;
Mai, Liqiang ;
Xu, Xu .
ADVANCED ENERGY MATERIALS, 2023, 13 (30)
[9]   Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase [J].
Fan, Lei ;
Li, Siyuan ;
Liu, Lei ;
Zhang, Weidong ;
Gao, Lina ;
Fu, Yao ;
Chen, Fang ;
Li, Jing ;
Zhuang, Houlong L. ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (33)
[10]   Lithiophilic Cu-Li2O matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries [J].
Gong, Zhe ;
Lian, Cheng ;
Wang, Pengfei ;
Huang, Kai ;
Zhu, Kai ;
Ye, Ke ;
Yan, Jun ;
Wang, Guiling ;
Cao, Dianxue .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) :1270-1277