A transparent machine learning algorithm uncovers HbA1c patterns associated with therapeutic inertia in patients with type 2 diabetes and failure of metformin monotherapy

被引:0
作者
Musacchio, Nicoletta [1 ]
Zilich, Rita [2 ]
Masi, Davide [3 ]
Baccetti, Fabio [4 ]
Nreu, Besmir [5 ]
Giorda, Carlo Bruno [6 ]
Guaita, Giacomo [7 ]
Morviducci, Lelio [8 ]
Muselli, Marco [9 ]
Ozzello, Alessandro [10 ]
Pisani, Federico [2 ]
Ponzani, Paola [11 ]
Rossi, Antonio [12 ,16 ]
Santin, Pierluigi [13 ]
Verda, Damiano [9 ]
Di Cianni, Graziano [14 ]
Candido, Riccardo [15 ]
机构
[1] ASST Nord Milano, UOS Integrating Primary & Specialist Care, Via Filippo Carcano 17, I-20149 Milan, Italy
[2] Mix X Partner, Via Circonvallaz 5, Ivrea, TO, Italy
[3] Sapienza Univ Rome, Dept Expt Med, Sect Med Pathophysiol Food Sci & Endocrinol, I-00161 Rome, Italy
[4] ASL Nordovest Toscana, ASL Nordovest, Massa Carrara, MS, Italy
[5] Careggi Hosp, Diabetol Unit, Largo GA Brambilla 3, I-50134 Florence, FI, Italy
[6] ASL TO5, Diabet & Endocrinol Unit, Turin, TO, Italy
[7] ASL SULCIS, Diabet & Endocrinol UNIT, Carbonia, Carbonia Iglesi, Italy
[8] Osped S Spirito ASL Roma 1, UOC Diabetol & Dietol, Rome, RM, Italy
[9] Rulex Inc, Rulex Innovat Labs, Via Felice Romani 9-2, I-16122 Genoa, GE, Italy
[10] Grp Nazl AMD, Turin, TO, Italy
[11] Diabet & Metab Dis Unit ASL 4 Liguria, Chiavari, GE, Italy
[12] IRCCS Osped Galeazzi St Ambrogio, I-20149 Milan, Italy
[13] Deimos, Udine, UD, Italy
[14] Livorno Hosp, Diabet & Metab Dis Unit, Hlth Local Unit Nord West Tuscany, Pad 4 Viale Alfieri 36, Livorno, LI, Italy
[15] Azienda Sanit Univ Giuliano Isontina, I-34128 Trieste, Italy
[16] Univ Milan, Dept Biomed & Clin Sci, Milan, Italy
关键词
Type; 2; diabetes; Machine learning; Artificial intelligence; Therapeutic inertia; Metformin monotherapy; Metformin failure; HbA1c; CLINICAL INERTIA; QUALITY; NETWORK; IMPACT;
D O I
10.1016/j.ijmedinf.2024.105550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aims: This study aimed to identify and categorize the determinants influencing the intensification of therapy in Type 2 Diabetes (T2D) patients with suboptimal blood glucose control despite metformin monotherapy. Methods: Employing the Logic Learning Machine (LLM), an advanced artificial intelligence system, we scrutinized electronic health records of 1.5 million patients treated in 271 diabetes clinics affiliated with the Italian Association of Medical Diabetologists from 2005 to 2019. Inclusion criteria comprised patients on metformin monotherapy with two consecutive mean HbA1c levels exceeding 7.0%. The cohort was divided into "inertia-NO" (20,067 patients with prompt intensification) and "inertia-YES" (13,029 patients without timely intensification). Results: The LLM model demonstrated robust discriminatory ability among the two groups (ROC-AUC = 0.81, accuracy = 0.71, precision = 0.80, recall = 0.71, F1 score = 0.75). The main novelty of our results is indeed the identification of two main distinct subtypes of therapeutic inertia. The first exhibited a gradual but steady HbA1c increase, while the second featured a moderate, non-uniform rise with substantial fluctuations. Conclusions: Our analysis sheds light on the significant impact of HbA1c levels over time on therapeutic inertia in patients with T2D, emphasizing the importance of early intervention in the presence of specific HbA1c patterns.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] Diabetic Retinopathy: Mechanism, Diagnosis, Prevention, and Treatment
    Al-Shabrawey, Mohamed
    Zhang, Wenbo
    McDonald, Denise
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [2] Clinical inertia is the enemy of therapeutic success in the management of diabetes and its complications: a narrative literature review
    Andreozzi, F.
    Candido, R.
    Corrao, S.
    Fornengo, R.
    Giancaterini, A.
    Ponzani, P.
    Ponziani, M. C.
    Tuccinardi, F.
    Mannino, D.
    [J]. DIABETOLOGY & METABOLIC SYNDROME, 2020, 12 (01)
  • [3] Developing a quality measure for clinical inertia in diabetes care
    Berlowitz, DR
    Ash, AS
    Glickman, M
    Friedman, RH
    Pogach, LM
    Nelson, AL
    Wong, AT
    [J]. HEALTH SERVICES RESEARCH, 2005, 40 (06) : 1836 - 1853
  • [4] Overall Quality of Care Predicts the Variability of Key Risk Factors for Complications in Type 2 Diabetes: An Observational, Longitudinal Retrospective Study
    Ceriello, Antonio
    Rossi, Maria Chiara
    De Cosmo, Salvatore
    Lucisano, Giuseppe
    Pontremoli, Roberto
    Fioretto, Paola
    Giorda, Carlo
    Pacilli, Antonio
    Viazzi, Francesca
    Russo, Giuseppina
    Nicolucci, Antonio
    [J]. DIABETES CARE, 2019, 42 (04) : 514 - 519
  • [5] 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD
    Cosentino, Francesco
    Grant, Peter J.
    Aboyans, Victor
    Bailey, Clifford J.
    Ceriello, Antonio
    Delgado, Victoria
    Federici, Massimo
    Filippatos, Gerasimos
    Grobbee, Diederick E.
    Hansen, Tina Birgitte
    Huikuri, Heikki, V
    Johansson, Isabelle
    Juni, Peter
    Lettino, Maddalena
    Marx, Nikolaus
    Mellbin, Linda G.
    Ostgren, Carl J.
    Rocca, Bianca
    Roffi, Marco
    Sattar, Naveed
    Seferovic, Petar M.
    Sousa-Uva, Miguel
    Valensi, Paul
    Wheeler, David C.
    Piepoli, Massimo Francesco
    Birkeland, Kare, I
    Adamopoulos, Stamatis
    Ajjan, Ramzi
    Avogaro, Angelo
    Baigent, Colin
    Brodmann, Marianne
    Bueno, Hector
    Ceconi, Claudio
    Chioncel, Ovidiu
    Coats, Andrew
    Collet, Jean-Philippe
    Collins, Peter
    Cosyns, Bernard
    Di Mario, Carlo
    Fisher, Miles
    Fitzsimons, Donna
    Halvorsen, Sigrun
    Hansen, Dominique
    Hoes, Arno
    Holt, Richard I. G.
    Home, Philip
    Katus, Hugo A.
    Khunti, Kamlesh
    Komajda, Michel
    Lambrinou, Ekaterini
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 (02) : 255 - 323
  • [6] Dagliati Arianna, 2018, J Diabetes Sci Technol, V12, P295, DOI 10.1177/1932296817706375
  • [7] Determinants of good metabolic control without weight gain in type 2 diabetes management: a machine learning analysis
    Giorda, Carlo Bruno
    Pisani, Federico
    De Micheli, Alberto
    Ponzani, Paola
    Russo, Giuseppina
    Guaita, Giacomo
    Zilich, Rita
    Musacchio, Nicoletta
    [J]. BMJ OPEN DIABETES RESEARCH & CARE, 2020, 8 (01)
  • [8] Han S, 2016, Arxiv, DOI arXiv:1510.00149
  • [9] On evaluation metrics for medical applications of artificial intelligence
    Hicks, Steven A.
    Struemke, Inga
    Thambawita, Vajira
    Hammou, Malek
    Riegler, Michael A.
    Halvorsen, Pal
    Parasa, Sravanthi
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] 10-year follow-up of intensive glucose control in type 2 diabetes
    Holman, Rury R.
    Paul, Sanjoy K.
    Bethel, M. Angelyn
    Matthews, David R.
    Neil, H. Andrew W.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2008, 359 (15) : 1577 - 1589