SOBOLEV REGULARITY FOR OPTIMAL TRANSPORT MAPS OF NONCONVEX PLANAR DOMAINS

被引:0
作者
Mooney, Connor [1 ]
Rakshit, Arghya [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
optimal transport; Monge--Ampe`; re equation; regularity; MONGE-AMPERE EQUATION;
D O I
10.1137/23M1582436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a sharp global W 2, p estimate for potentials of optimal transport maps that take a certain class of nonconvex planar domains to convex ones.
引用
收藏
页码:4742 / 4758
页数:17
相关论文
共 24 条
[1]  
Alexandroff A, 1942, CR ACAD SCI URSS, V36, P195
[2]   A GLOBAL EXISTENCE RESULT FOR THE SEMIGEOSTROPHIC EQUATIONS IN THREE DIMENSIONAL CONVEX DOMAINS [J].
Ambrosio, Luigi ;
Colombo, Maria ;
De Philippis, Guido ;
Figalli, Alessio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (04) :1251-1268
[3]   Existence of Eulerian Solutions to the Semigeostrophic Equations in Physical Space: The 2-Dimensional Periodic Case [J].
Ambrosio, Luigi ;
Colombo, Maria ;
De Philippis, Guido ;
Figalli, Alessio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2209-2227
[4]   BOUNDARY C1,α REGULARITY OF POTENTIAL FUNCTIONS IN OPTIMAL TRANSPORTATION WITH QUADRATIC COST [J].
Andriyanova, Elina ;
Chen, Shibing .
ANALYSIS & PDE, 2016, 9 (06) :1483-1496
[5]   Boundary regularity of maps with convex potentials .2. [J].
Caffarelli, LA .
ANNALS OF MATHEMATICS, 1996, 144 (03) :453-496
[7]   Free boundaries in optimal transport and Monge-Ampere obstacle problems [J].
Caffarelli, Luis A. ;
McCann, Robert J. .
ANNALS OF MATHEMATICS, 2010, 171 (02) :673-730
[8]  
Caffarelli LuisA., 1992, J. Amer. Math. Soc, V5, P99, DOI [DOI 10.2307/2152752, 10.1090/S0894-0347-1992-1124980-8]
[9]   Global regularity for the Monge-Ampere equation with natural boundary condition [J].
Chen, Shibing ;
Liu, Jiakun ;
Wang, Xu-Jia .
ANNALS OF MATHEMATICS, 2021, 194 (03) :745-793
[10]   Global regularity of optimal mappings in non-convex domains [J].
Chen, Shibing ;
Liu, Jiakun ;
Wang, Xu-Jia .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (11) :2057-2072