All-Fluorinated Electrolyte Engineering Enables Practical Wide-Temperature-Range Lithium Metal Batteries

被引:24
作者
Dong, Liwei [1 ]
Luo, Dan [2 ]
Zhang, Bowen [3 ,4 ]
Li, Yaqiang [1 ]
Yang, Tingzhou [2 ]
Lei, Zuotao [1 ]
Zhang, Xinghong [3 ,4 ]
Liu, Yuanpeng [3 ,4 ]
Yang, Chunhui [1 ]
Chen, Zhongwei [2 ]
机构
[1] Harbin Inst Technol, MOE Engn Res Ctr Electrochem Energy Storage & Carb, Sch Chem & Chem Engn, Harbin 150080, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[3] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[4] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium metal battery; electrolyte engineering; fluorinated electrolyte; wide temperature; solidelectrolyte interface; EFFICIENCY;
D O I
10.1021/acsnano.4c06231
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of lithium metal batteries (LMBs) is severely hindered owing to the limited temperature window of the electrolyte, which renders uncontrolled side reactions, unstable electrolyte/electrode interface (EEI) formation, and sluggish desolvation kinetics for wide temperature operation condition. Herein, we developed an all-fluorinated electrolyte composed of lithium bis(trifluoromethane sulfonyl)imide, hexafluorobenzene (HFB), and fluoroethylene carbonate, which effectively regulates solvation structure toward a wide temperature of 160 degrees C (-50 to 110 degrees C). The introduction of thermostable HFB induces the generation of EEI with a high LiF ratio of 93%, which results in an inhibited side reaction and gas generation on EEI and enhanced interfacial ion transfer at extreme temperatures. Therefore, an unparalleled capacity retention of 88.3% after 400 cycles at 90 degrees C and an improved cycling performance at -50 degrees C can be achieved. Meanwhile, the practical 1.3 Ah-level pouch cell delivers high energy density of 307.13 Wh kg(-1) at 60 degrees C and 277.99 Wh kg(-1) at -30 degrees C after 50 cycles under lean E/C ratio of 2.7 g/Ah and low N/P ratio of 1.2. This work not only offers a viable strategy for wide-temperature-range electrolyte design but also promotes the practicalization of LMBs.
引用
收藏
页码:18729 / 18742
页数:14
相关论文
共 41 条
[1]   LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands [J].
Dodda, Leela S. ;
de Vaca, Israel Cabeza ;
Tirado-Rives, Julian ;
Jorgensen, William L. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W331-W336
[2]   1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations [J].
Dodda, Leela S. ;
Vilseck, Jonah Z. ;
Tirado-Rives, Julian ;
Jorgensen, William L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (15) :3864-3870
[3]   Reconstruction of Solid Electrolyte Interphase with SrI2 Reactivates Dead Li for Durable Anode-Free Li-Metal Batteries [J].
Dong, Liwei ;
Zhong, Shijie ;
Yuan, Botao ;
Li, Yaqiang ;
Liu, Jipeng ;
Ji, Yuanpeng ;
Chen, Dongjiang ;
Liu, Yuanpeng ;
Yang, Chunhui ;
Han, Jiecai ;
He, Weidong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (23)
[4]   Electrolyte Engineering for High-Voltage Lithium Metal Batteries [J].
Dong, Liwei ;
Zhong, Shijie ;
Yuan, Botao ;
Ji, Yuanpeng ;
Liu, Jipeng ;
Liu, Yuanpeng ;
Yang, Chunhui ;
Han, Jiecai ;
He, Weidong .
RESEARCH, 2022, 2022
[5]   High-Polarity Fluoroalkyl Ether Electrolyte Enables Solvation-Free Li+ Transfer for High-Rate Lithium Metal Batteries [J].
Dong, Liwei ;
Liu, Yuanpeng ;
Wen, Kechun ;
Chen, Dongjiang ;
Rao, Dewei ;
Liu, Jipeng ;
Yuan, Botao ;
Dong, Yunfa ;
Wu, Ze ;
Liang, Yifang ;
Yang, Mengqiu ;
Ma, Jianyi ;
Yang, Chunhui ;
Xia, Chuan ;
Xia, Baoyu ;
Han, Jiecai ;
Wang, Gongming ;
Guo, Zaiping ;
He, Weidong .
ADVANCED SCIENCE, 2022, 9 (05)
[6]   Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases [J].
Dong, Liwei ;
Liu, Yuanpeng ;
Chen, Dongjiang ;
Han, Yupei ;
Ji, Yuanpeng ;
Liu, Jipeng ;
Yuan, Botao ;
Dong, Yunfa ;
Li, Qun ;
Zhou, Shengyu ;
Zhong, Shijie ;
Liang, Yifang ;
Yang, Mengqiu ;
Yang, Chunhui ;
He, Weidong .
ENERGY STORAGE MATERIALS, 2022, 44 :527-536
[7]   Suppression of Polysulfide Dissolution and Shuttling with Glutamate Electrolyte for Lithium Sulfur Batteries [J].
Dong, Liwei ;
Liu, Jipeng ;
Chen, Dongjiang ;
Han, Yupei ;
Liang, Yifang ;
Yang, Mengqiu ;
Yang, Chunhui ;
He, Weidong .
ACS NANO, 2019, 13 (12) :14172-14181
[8]   High-Energy Rechargeable Metallic Lithium Battery at-70°C Enabled by a Cosolvent Electrolyte [J].
Dong, Xiaoli ;
Lin, Yuxiao ;
Li, Panlong ;
Ma, Yuanyuan ;
Huang, Jianhang ;
Bin, Duan ;
Wang, Yonggang ;
Qi, Yue ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (17) :5623-5627
[9]   Regulating Li deposition at artificial solid electrolyte interphases [J].
Fan, Lei ;
Zhuang, Houlong L. ;
Gao, Lina ;
Lu, Yingying ;
Archer, Lynden A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3483-3492
[10]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890